
Technical Report
CMU/SEI-96-TR-016
ESC-TR-96-016

Carnegie-Mellon University

- Software Engineering Institute

A Case Study in Successful Product Line Development

Lisa Brownsword

Paul Clements

~October 1996

trd

19961021 079

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administration
of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the
Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000

Technical Report
CMU/SEI-96-TR-01 6

ESC-TR-96-016

October 1996

A Case Study in Successful Product Line Development

Lisa Brownsword

Paul Clements

Product Line Systems Program

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR T COMMAND
R

o R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright @) 1996 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research

and development center. The Government of the United States has a royalty-free government-purpose license to

use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,

for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-

tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of

Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-

cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-

tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact

DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

Acknowledgments vii
1 Introduction 1

1.1 Purpose and Background 1
1.2 Product Lines and Reuse 3
1.3 Why Did We Visit CelsiusTech? 5
1.4 Gathering Information 6
1.5 Report Structure 6

2 CelsiusTech Systems 9
2.1 Background 9
2.2 The Ship System 2000 Naval Product Line 10
2.3 Impetus for a Product Line Approach 12
2.4 What Was New? Everything! 14
2.5 Analysis 14

3 Architectural Foundations for the SS2000 Product Line 19
3.1 Requirements for an Architecture 19
3.2 Operating Environment 19
3.3 Physical Architecture 20
3.4 Software Architecture 20
3.5 Parameterized Components 27
3.6 Analysis 28

4 Organizational Factors 33
4.1 Previous Project Organization 33
4.2 SS2000 Organization, 1986 to 1991 34
4.3 SS2000 Organization 1992 to 1994 36
4.4 SS2000 Organization Since 1994 37
4.5 Staffing Characteristics During 1986 to 1991 38
4.6 Staffing Characteristics for 1992 to 1994 40
4.7 Staffing Characteristics Since 1994 41
4.8 Analysis 42

5 Processes, Methods, and Tools 45
5.1 Software Development and Processes Before the Product Line

Approach 45
5.2 Development Approaches, 1986 to 1990 45
5.3 Development Approaches, 1990 to 1994 51
5.4 Development Approaches Since 1994 57
5.5 Analysis 58

CMU/SEI-96-TR-016 i

6 Managing the Learning Curves 61
6.1 Managing the Learning Curve for Managers 61
6.2 Managing the Learning Curve for Technicians 62
6.3 Managing the Learning Curve for the Customer 64
6.4 Analysis 65

7 Summary Results 67
7.1 Stages of Product Line Development 67
7.2 Substantial Initial Investment Required 68
7.3 The Payoff 69
7.4 Architecture Was the Foundation 69
7.5 Organizational Issues 70
7.6 CelsiusTech and the Domain Engineering / Application Engineering

Life-Cycle Model 70
7.7 Conclusion 72

Appendix A SS2000 Documentation Set 73

Appendix B Correspondence to DoD-STD 2167A Activities 75

Appendix C SS2000 Ada Practicum 77

Appendix D SS2000 Re-Education Curriculum Description 79
D.1 Curriculum Components 79
D.2 Typical Usage 81

References 83

ii CMU/SEI-96-TR-016

List of Figures

Figure 1: CelsiusTech Systems' Corporate Evolution 9
Figure 2: Product Schedules: From Start to Final Delivery 11
Figure 3: Reuse Across SS2000 Product Line 12
Figure 4: Changing Technical Infrastructures 15
Figure 5: Typical Physical Architecture of a Ship System 2000 Product 21
Figure 6: Units of Software Components, Adapted from Cederling

[Cederling 92] 23
Figure 7: Layered Software Architecture for Ship System 2000 24
Figure 8: A More Detailed Rendering of the SS2000 Layered Architecture 24
Figure 9: Another Description of the Architectural Layers 25
Figure 10: Using (and Bypassing) the Common Object Manager Repository 26
Figure 11: Mk2.5 Project Organization (1980 - 1985) 33
Figure 12: SS2000 Organization, 1987 - 1991 35
Figure 13: SS2000 Organization Since 1994 37
Figure 14: Approximate Software Staff Profile 39
Figure 15: Timeline for Early Product Line Development 46
Figure 16: System Product Development Phases Showing Documents

Produced at Each Phase [Cederling 92] 52
Figure 17: System Family Development Phases [Cederling 92] 55
Figure 18: SS2000 Training Program 64
Figure 19: Domain Engineering and Application Engineering 71

CMU/SEI-96-TR-016 iii

iv CMU/SEI-96-TR-Q1 6

List of Tables

Table 1: Systems Built by CelsiusTech Before 1985 13
Table 2: System Product Development Phases 53
Table 3: System Family Development Phases 56
Table 4: Observed Product Line Development Stages 67
Table 5: Enabling Organizational Attributes for Product Line Stages 68
Table 6: SS2000 Documentation Set, Adapted from Cederling

[Cederling 92] 73
Table 7: DoD-STD 2167A Reviews and CelsiusTech Documentation,

Adapted from Cederling [Cederling 92] 75
Table 8: Estimated Student Time Per Exercise 78
Table 9: Typical Curriculum Usage Scenario 81

CMU/SEI-96-TR-016

vi CMU/SEI-96-TR-Q1 6

Acknowledgments
The authors gratefully acknowledge the gracious assistance of CelsiusTech Systems, and es-
pecially that of Ulf Olsson. We are grateful for the time provided by all of the people at Cel-
siusTech Systems who spoke with us, and we are grateful to the management of CelsiusTech
Systems, particularly Jaak Urmi, for allowing us to visit.

The authors also gratefully acknowledge the hard work of our reviewers, whose comments and
questions improved the result: Paul Kogut, Linda Northrop, Sholom Cohen, David Bristow, Jim

Withey, and Dan Burton. Finally, Bill Pollak's excellent editorial skills are also deeply appreci-
ated.

CMU/SEI-96-TR-016 vii

viii CMU/SEI-96-TR-O1 6

A Case Study in Successful Product Line Development

Abstract: A product line is a set of related systems that address a market
segment. Building a product line out of a common set of core assets, as
opposed to building each member system separately, epitomizes reuse.
Although software technology is key to achieving a product line capability,
organizational and process considerations are just as crucial. This report
describes the experience of one company, CelsiusTech Systems AB of
Sweden, that builds large, complex, embedded, real-time shipboard command-
and-control systems as a product line, developed in common from a base set
of core software and organizational assets. The report describes the changes
that CelsiusTech had to make to its software, organizational, and process
structures to redirect the company toward a product line approach that yielded
substantial economic and marketplace benefits to the company.

1 Introduction

1.1 Purpose and Background

This report relates the experience of a company (CelsiusTech Systems AB, a Swedish naval
defense contractor) that has successfully adopted a product line approach to building large,
complex, software-intensive systems. A product line is a group of related systems that address
a market niche or mission. In the case of CelsiusTech the product line is called Ship System
2000 and consists of approximately a dozen shipboard command-and-control systems for
Scandinavian, Middle Eastern, and South Pacific navies.

1.1.1 Product Lines

Building a product line from a common asset base requires careful management, for it often
entails multiple development efforts operating in parallel. However, if those development ef-
forts proceed independently without taking advantage of each other, a powerful opportunity for
gaining economies from sharing and reusing knowledge is lost.

Through careful management and engineering, a product line can be developed that exploits
a common set of assets, ranging from reusable software components to work breakdown
structures for the individual projects. A group of systems built from a common set of assets is
a product family. A product family need not constitute a product line (the individual systems
may have no clearly coordinated role in meeting a market). Conversely, a product line need
not be built from a product family (the individual systems may each be developed independent-
ly). However, building a product line as a product family leverages and amortizes prior invest-
ment to the maximum degree possible. Assuming the product line has a sufficient number of
members, the sum cost of building the product line as a whole becomes much less than the
sum cost of building the individual systems independently. Producing a new system becomes

CMU/SE1-96-TR-016 1

less a matter of creation than one of generation or modification (from a previous system, or
from a generic version of a "prototypical" family member). Uncertainties associated with build-
ing an unprecedented system are nullified, or at least isolated, by the product family approach:
Problems will usually have already been faced and solved by early members of the family.

1.1.2 Benefits-And Costs

CelsiusTech Systems reports extremely high productivity and extremely low cost with their
product line I approach, compared to traditional development paradigms. CelsiusTech Sys-
tems is able to turn out large (1-1.5 million lines of Ada code), embedded, performance-critical,
highly distributed (up to 70 processors on up to 30 local area network nodes) shipboard com-
mand-and-control systems for modern naval vessels with

* software accounting for approximately 20% of the system cost, as opposed to 65% for
similar systems not developed using the product line approach

" high schedule and cost predictability

* high customer satisfaction
* integration handled by one or two people at most

* predictable performance and distributed-system issues in new systems

These results were not without cost. A formidable initial investment in time and capital was re-
quired to initiate the product line approach at CelsiusTech Systems. Much of this investment
was attributed to the fact that the company needed to embrace new technologies that were
dawning in their application area-Ada, for example-but much of it was directly attributable
to the business decision to pursue product line development. For example, an organizational
restructuring and intensive training program were required.

1.1.3 Technology Isn't Enough

The technological approaches to product line development flow directly from the software de-
sign and reuse communities. Domain models, abstract interfaces, layered architectures, ob-
jects and information-hiding, and parameterized code units all play a major role in
CelsiusTech's success. We will report no new software engineering technologies. What we
discovered is that the non-technical issues-business, organizational, personnel, managerial,
process, and cultural-are at least as critical as the software engineering principles involved.
We will answer the following questions and others relative to the CelsiusTech experience:

* personnel issues

- What kind of training is required for personnel?

1 Henceforth, when we speak of a product line we mean one that was developed using a common set of core
assets-i.e., a product line built as a product family.

2 CMU/SEI-96-TR-016

- How have the company's personnel needs shifted? What kind of expertise is
in most demand now?

* customer interaction

- How are new contracts negotiated with a customer in the context of a product
line approach?

- How do the customers interact with each other to collectively manage the
evolution of the product line?

' process issues

- What is the process for producing a new member of the product line? What
is the process for upgrading an old one?

- What are the units of reuse?

- How are testing and integration performed to take advantage of reuse?
* Organizational issues

- What is the organizational structure that maintains the product line and each
specific member of it?

- What is the nature of the initial investment required in establishing a product
line?

1.1.4 Purpose

We intend this report, therefore, to help fill a gap in the literature about producing product lines.
Until now, this literature has concentrated on the technical aspects. We intend this report to be
useful to the following audiences:

* managers who are considering instigating a product line approach in their organizations
and would like to benefit from experience. For them, we detail the factors and problems
involved in the successful development of a product line and recount one organization's
experience in dealing with those factors and overcoming those problems.

" advocates of the product line approach who would like to convince their management to
adopt it. For them, we provide proof that the product line approach can work, can be made
to be economically feasible, and can result in a robust business climate.

This report illustrates what it took to help an organization make a successful transition to a new
business and technical paradigm: the right technology, an effective transition plan, and strong
management committed to making it work.

1.2 Product Lines and Reuse

In the early days of computer programming, when computers were expensive and software
was (by comparison) cheap, little thought was paid to reusing programming assets. That is, of
course, no longer the case. Software is usually by far the most expensive component of an
operational computer system. Even if the computer is part of a larger system (such as an air-
craft or a nuclear power plant), the cost of the software is a significant if not overwhelming fac-
tor, especially when the system is long lived and incurs significant modification throughout its

CMU/SEI-96-TR-016 3

service life. The economics of software engender approaches to reduce the cost of develop-
ment, deployment, and life-cycle maintenance of software systems.

A basic approach to reducing cost is to leverage the investment across more than one system.
Thus, software reuse is a key strategy for reducing the per-system cost of software. This strat-
egy avoids special-case development, but instead reuses already existing assets to the extent
possible. Tactics include

* buy versus build: Acquire software systems (or their components) from commercial
vendors or external suppliers.

* plan for reuse: For those components developed for internally developed components,
build them so that they are useful in systems other than the one for which they were
developed, ideally in systems that the organization is planning to build in the future.

Clearly an asset is more likely to be reused in a future system (hence reducing its overall cost)
if that system is similar to the one for which the asset was acquired. For example, software

embodying a navigation algorithm for an aircraft is very likely to be reused in another aircraft

system, somewhat likely to be reused in a ship application, and not likely at all to be reused in
a banking system.

Thus, an organization has a certain economic incentive to structure its marketable products
so that they are functionally and structurally similar to one another. A group of similar products,

structured to take advantage of each other's assets in order to yield economies of production,
is a product line built as a product family. When a new order is received, the organization pro-
duces a product that may still perform to the new customer's specific requirements, but its pro-
duction is viewed as instantiating a version of a generic product rather than developing anew.

Product lines epitomize reuse, sometimes in ways not immediately evident. Consider the as-
sets that can be reused across members of a product line:

" components: Components are applicable across individual products. Far and above mere
code reuse, component reuse includes the (often-difficult) design work that was invested
initially. Design successes are captured and reused; design dead ends are avoided, not
repeated. This includes the design of the component's interface, its documentation, its
test plans.and procedures, and any models (such as performance models) used to predict
or measure its behavior.

* personnel: Because of the commonality of the applications, personnel can be fluidly
transferred among projects as required. Their expertise is applicable across the entire
line.

* defect elimination results: Because errors eliminated in a component on one product raise
the quality of the corresponding components in all the other products, reliability and
overall quality increase.

* project-planning expertise: Because past experience is a high-fidelity indicator of future
performance, budgeting and scheduling are more predictable. Work breakdown
structures need not be invented each time. Teams, team size, and team composition are
all known quantities.

4 CMU/SEI-96-TR-016

* performance analyses: Performance models, schedulability analysis, distributed-system
issues (such as proving absence of deadlock), allocation of processes to processors,
fault-tolerance schemes, and network-load policies all carry over from product to product.

* processes, methods, and tools: Configuration-control procedures and facilities,
documentation plans and approval processes, tool environments, and a host of other day-
to-day engineering-support activities can all be carried over from product to product.

* exemplar systems: Deployed products serve as high-quality demonstration prototypes.
Because feasibility is not an issue, customer satisfaction increases (and risk decreases).
Deployed products also serve as high-quality engineering prototypes, providing highly
detailed performance models.

Although not standard practice, the technical means for achieving software reuse based on
product lines are well established. Applicable areas, all extensively covered in the software en-
gineering literature, include

* domain analysis: producing a domain model of the product line that identifies what is
common to all members, and identifying the ways in which members can vary from one
another

* software architecture: adopting a standard skeletal infrastructure that applies to all (actual
and potential) members of the product line, as identified by the domain analysis

design methodology, including object-based design: applying the principles of separation
of concerns and information hiding to identify the components that the architecture
comprises, and assigning roles and responsibilities to each; then designing each
component with an interface that provides the services of the component to the rest of the
system in an implementation-independent fashion

Experience shows, however, that a technical approach alone is not sufficient to produce a suc-
cessful capability for product line production. Economic, organizational, personnel, manageri-
al, customer, marketplace, and process factors all play a crucial role in establishing and
maintaining a product line; but unfortunately these factors are all but overlooked in the litera-
ture.

1.3 Why Did We Visit CelsiusTech?

Our investigation into the CelsiusTech Systems experience began by selecting CelsiusTech as
one of a series of case studies in software architecture. We intended the case studies to illus-
trate how architecture can be an important tool in satisfying high-risk project requirements
such as high performance, high reliability, or (in the case of CelsiusTech Systems) reusing as-
sets from one member of a product line to another.

In CelsiusTech Systems, we discovered one of the very few organizations that had embarked
consciously and purposefully on producing a product line as its main business approach. Fur-
ther, the evolution from previous business practices had been comprehensive, and represent-
ed a fundamental change in CelsiusTech's business approach. The process was well
documented; the corporate memory was largely intact, and papers had been written about the
process that recorded the transition. Finally, CelsiusTech Systems personnel were willing to
share their experiences with us candidly and without the usual mantle of corporate secrecy.

CMU/SEI-96-TR-016 5

The CelsiusTech Systems experience represented a rare opportunity to record and report on
an organization-wide transition to a product line business approach. This report is the result.

1.4 Gathering Information

Information gathered in this report came from the following sources:

* previous knowledge. One of the authors of this report (Brownsword) had previously
worked for Rational Software Corporation, which supplied part of the development
environment and provided technology-transition support throughout the development of
the product line.

* previously published reports. We consulted CelsiusTech Systems' marketing literature,
which touted their product line approach. Also, CelsiusTech Systems had been previously
featured in a dissertation, from a Swedish university, that outlined a set of industrial
software-development practices. Although the focus of this dissertation was not on
product lines per se, it provided an excellent summary of CelsiusTech Systems' product
line architecture and methodological approach to engineering [Cederling 92].

* interviews. In May of 1995, the authors visited CelsiusTech Systems at their headquarters
near Stockholm, Sweden and conducted interviews with more than two dozen key
personnel involved in the planning, development, and production of their family of
shipboard command-and-control systems. Senior managers, line managers, project
managers, designers, programmers, testers, and trainers and educators were all
interviewed over a period of three full days. On the fourth day, we presented a technical
seminar outlining the major lessons that we had learned during our visit.

* documentation. We reviewed CelsiusTech Systems' Ada interface specification that
provides developers with information regarding key component interfaces and usage
guidelines. We also reviewed the document that records CelsiusTech's development
methodology and processes.

As a condition of cooperation, CelsiusTech Systems management was given the right to re-
view this report before publication. Although everyone with whom we spoke was forthright and
candid, we understood that some of the data (especially concerning the company's business
plans) were confidential. The purpose of the review was to make sure that we did not inadvert-
ently divulge any sensitive information and that the report was free of factual errors.

1.5 Report Structure

The report consists of the following sections:

* Section 2 describes CelsiusTech Systems: the company, its business domain and product
line, the impetus for creating a product line business approach, and the results that have
been achieved thus far.

* Section 3 outlines the architectural foundations for the Ship System 2000 product line.
* Section 4 discusses the organizational, management, and personnel factors associated

with CelsiusTech Systems' creation, use, and evolution of its product line.
* Section 5 summarizes the process, methods, and tools applied to the development and

maintenance of the assets used to produce the product line.

6 CMU/SEI-96-TR-016

* Section 6 discusses the learning curves that CelsiusTech had to climb to educate its
management, its technicians, and its customers in the new approach.

* Section 7 concludes the report with our analysis of the CelsiusTech experience.

We provide additional information in appendices, including detail on the life-cycle processes

and education curriculum applied by CelsiusTech Systems.

CMU/SEI-96-TR-016 7

8 CMU/SEI-96-TR-016

2 CelsiusTech Systems

2.1 Background

CelsiusTech Systems is one of Sweden's leading suppliers of command-and-control systems.
It is part of Sweden's largest-and one of Europe's leading-defense industry groups. Other
members include Bofors, Kockums, FFV Aerotech, and Telub.

CelsiusTech is composed of CelsiusTech Systems (advanced software systems) and Cel-
siusTech Electronics (defense electronics). Until recently, CelsiusTech IT (information technol-
ogy systems) was also a member company. CelsiusTech has approximately 2000 employees
and annual sales of $300 million1 .The main site is near Stockholm, Sweden, with subsidiaries
located in Singapore, New Zealand, and Australia.

This study focuses on CelsiusTech Systems2. CelsiusTech's areas of expertise include com-
mand, control, and communication (03) systems, fire-control systems, and electronic warfare
systems for navy, army, and air force applications. The current organization has undergone
several changes in ownership and name since 1985. Originally Philips Elektronikindustrier AB,
the division was sold to Bofors Electronics AB in 1989 and reorganized into NobelTech AB in
1991. It was purchased by CelsiusTech in 1993. Although senior management changed with
each transaction, most of the mid- and lower level management and the technical staff have
remained, thereby providing continuity and stability.

Philips Elektronikindustrier AB

Bofors Electronics AB

1991 NobelTech AB

19 3 CelsiusTech

Figure 1: CelsiusTech Systems' Corporate Evolution

In this section, we first summarize the naval product line, describe its current status, and pre-
view CelsiusTech's results from creating it. Next, we explore the events and motives that led
CelsiusTech to create a product line. Finally, we detail the technical and organizational chang-

1. All monetary amounts will be given in U. S. dollars.

2. To increase the readability of this report, all subsequent references to CelsiusTech Systems are shortened to

CelsiusTech.

CMU/SEI-96-TR-016 9

es that CelsiusTech initiated to transition its organization to a product line approach. We con-
clude the section with a summary of the key points and our analysis.

2.2 The Ship System 2000 Naval Product Line

CelsiusTech refers to its naval product line as the Ship System 2000 (SS2000) family; this
product line is also known as the Mk3 family of products. Each member of the product line pro-
vides an integrated system unifying all weapons systems, command-and-control, and commu-
nication functions on a warship.Typical system configurations include 1-1.5 million lines of Ada
code distributed on a local area network (LAN) with 30-70 microprocessors.

2.2.1 Systems in the Product Line

Widely differing naval systems, both surface and submarine, have been or are being built as
part of the SS2000 product line. These include

* Swedish Goteborg class Coastal Corvettes (KKV) (380 tons)
• Danish SF300 class Multi-role patrol vessels (300 tons)
* Finnish Rauma class Fast Attack Craft (FAC) (200 tons)
" Australian/New Zealand ANZAC frigates (3225 tons)
* Danish Thetis class Ocean Patrol vessels (2700 tons)
* Swedish Gotland class A19 submarines (1330 tons)
• Pakistani Type 21 class frigates
" Republic of Oman patrol vessels
" Danish Niels Juel class corvettes

The last three are recently initiated projects for which there is insufficient data for substantive
contribution to this report. The Naval Systems Division has sold a total of 55 of its Mk3 naval
systems to seven different countries around the world [CelsiusTech 96].

2.2.2 Flexibility Yields Variability

Ships for which CelsiusTech supplies systems vary greatly in size, function, and armaments.
Each country requires different operator displays on differing hardware and presentation lan-
guages. Sensors and weapons systems and their interfaces to the software vary. Submarines
have different requirements from those of surface vessels. Computers in the product line in-
clude 68020, 68040, RS/6000, and DEC Alpha platforms. Operating systems include OS2000
(a CelsiusTech product based on Microware Systems Corporation's OS/9 real-time operating
system), AIX, POSIX, Digital UNIX, and others.Yet the SS2000 product line is flexible and ro-
bust to support this range of possible systems through a single architecture, a single asset
base, and a single organization. Section 3 of this report elaborates on the architectural at-
tributes we found contributing to such flexibility.

10 CMU/SEI-96-TR-016

2.2.3 Applying the SS2000 Product Line Assets to Related Business Areas

Although CelsiusTech's largest business area is naval applications, it has expanded its busi-
ness into the ground-based air defense systems market through a merger with the Command
and Control Division of Ericsson. The current project is a new C3 system for the Swedish Air
Force. By reusing the abstractions inherent in the SS2000 architecture, CelsiusTech was able
to quickly build the new architecture, lifting 40% of its components directly from the SS2000
asset base. Other business opportunities are being explored in new domains where the archi-
tecture and other product line assets are likely to prove a good fit.

2.2.4 Shrinking Schedules

Figure 2 shows the status and schedules for the current systems under development in the
CelsiusTech product line. System A is the basis of the product line. Customer project A has
run almost nine years, although functional releases were running on the designated ship since
late 1989. System B, the second of the two original projects, required approximately seven
years to complete; not dissimilar to the previous non-product line Mk2.5 system. System B was
built in parallel with system A, validating the commonality in the product line. While neither sys-
tem A nor B individually showed greater productivity, CelsiusTech was able to build two sys-
tems (and the product line assets) with roughly the same number of staff as for a single project.

SHIPS

A

B (first functional release
occurred in 1989)

C

D

E

F

G

1986 1988 1990 1992 1994 1996

Figure 2: Product Schedules: From Start to Final Delivery

CMU/SEI-96-TR-016 11

Systems C and D were begun after much of the product line asset base existed, with a corre-
spondingly shortened completion time. Since they are fully leveraging the product line assets,
systems E and F indicate a dramatic further schedule reduction. CelsiusTech reports that the
last three ships are all predictably on schedule.

While the production schedules show time to market for a product, they do not indicate how
well the systems reflect the use of a common asset base. Figure 3 shows the degree of com-
monality across the CelsiusTech naval systems 1. On average, 70-80% of the systems consist
of components that are used verbatim (i.e., checked out of a configuration-control library and
inserted without code modification).

140 ,

120,
10 Unique application

Number 100'* National application

of 80 Modified

system 60

functions 40 5 Reusable applicatio

20 -
Common (verbatim))

0
'A B e VC

Ships

Figure 3: Reuse Across SS2000 Product Line

2.3 Impetus for a Product Line Approach

To understand why CelsiusTech made the decision to develop a product line and what actions
were required, it is important to know where they began. Before 1986, the company developed
more than 100 systems in 25 different configurations ranging in size from 30,000 to 700,000
source lines of code in the fire-control domain.

From 1975 to 1980, CelsiusTech shifted its technology base from analog to 16-bit digital sys-
tems, creating the so-called Mk2 systems. These systems tended to be small, real time, and
embedded. The company progressively expanded the functionality and its expertise with real-
time applications in the course of building and delivering 17 systems.

From 1980 to 1985, customer requirements were shifting toward the integration of fire control
and weapons with command-and-control systems, thus increasing the size and complexity of

1. A "system function" as used in this figure is defined in Section 3.4.1.

12 CMU/SEI-96-TR-016

delivered systems. The Mk2 architecture was expanded to provide for multiple autonomous
processing nodes on point-to-point links, resulting in the Mk2.5 systems. These systems were
substantially larger, both in delivered code (700,000) and number of developers (300 engineer
years over 7 years). Conventional development approaches were used. While these had
served the company well on the smaller Mk2 systems, difficulties in predictable and timely in-
tegration, cost overruns, and schedule slippage resulted. While such experiences are painful,
they were important lessons for CelsiusTech. The company gained useful experience in the
elementary distribution of real-time processes onto autonomous links and in the use of a high-
level programming language (in this case, RTL/2, a Pascal-like real-time language designed
by John Barnes).

1970-1980: Mk2 systems 1980-1985: Mk2.5 systems

Kind of system Real-time embedded fire control; Real-time embedded command,
assembly language and RTL/2 control, communications, and

intelligence (C31);
RTL/2

Size 30-100K source lines of code 700K SLOC; 300 engineer-years
(SLOC) over 7 years

Platforms Analog and 16-bit digital Multiprocessors, minicomputers,
systems point-to-point links

Table 1: Systems Built by CelsiusTech Before 1985

In 1985, CelsiusTech (then Philips) was awarded two contracts simultaneously-one for the
Swedish navy and one for the Danish navy. Both ships' requirements indicated the need for
systems larger and more sophisticated than the previous Mk2.5. Looking at recent experience
with the Mk2.5 system and the need to build two even larger systems in parallel, management
and senior technical staff were stimulated to reevaluate their business and technical approach-
es. In its analysis, CelsiusTech determined that the continuation of the development technol-
ogies and practices applied on the Mk2.5 system were insufficient to produce the new systems
with any reasonable certainty of schedule, cost, and required functionality. Staffing require-
ments alone would have been prohibitive.

This situation provided the genesis of a new business strategy: recognizing the potential busi-
ness opportunity of selling and building a series, or family, of related systems rather than some
number of specific systems. Thus began the SS2000 product line. Another business driver
was the recognition of a 20- to 30-year life span for naval systems. During that time, changes
in threat requirements and technology advances must be addressed. The more flexible and
extendable the product line, the greater the business opportunities. These business drivers or
requirements forged the technical strategy.

The technical strategy would have to provide flexible and robust building blocks to populate the
product line assets from which new systems could be assembled with relative ease. As new

CMU/SEI-96-TR-016 13

system requirements arose, new building blocks could be added to the product line asset base
to sustain the business viability of the strategic decision.

In defining the technical strategy, an assessment of the Mk2.5 technology infrastructure indi-
cated serious limitations. A strategic decision was made to create a new generation of system
(the Mk3) to include new hardware and software, and a new supporting development ap-
proach. These would serve as the infrastructure for new systems development for the next de-
cade or two.

2.4 What Was New? Everything!

CelsiusTech's decision to convert its business strategy to a product line approach coincided
with a time of high technology flux. This meant that in order to implement the technical strategy
for the SS2000 product line, virtually all aspects of the hardware, software, and development
support changed. The hardware shifted from VAX/VMS minicomputers to Motorola 68000-se-
ries microcomputers. Whereas the Mk2.5 systems consisted of a small number of processors
on point-to-point links, the SS2000 products have a large number of highly distributed proces-
sors with fail-soft and fault-tolerant requirements. The software approach shifted from RTL/2-
based, structured analysis/design, waterfall development processes to Ada83 with more ob-
ject-based1 and iterative development processes. Development support migrated from cus-
tom, locally created and maintained development tools to a large, commercially supplied
environment. The major technical differences are summarized in Figure 4.

2.5 Analysis

The CelsiusTech experience reveals several key factors in the establishment of the SS2000
product line. Some were advantages; some were inhibitors. They include the following.

2.5.1 Ownership Changes

While it is routine to buy, sell, and restructure companies, the effect on an organization at-
tempting to adopt significantly different business and technical strategies is fundamental and
potentially devastating. Typically, management changes associated with company-ownership
transactions are sufficient to stop any transition or improvement efforts under way. Thus, to
start and sustain the transition to a new technology approach as significant as product lines
across three changes in ownership is remarkable. There is some evidence that the company's
highest level management was preoccupied with the ownership changes. Middle management
thus was allowed to proceed on its course unfettered by management who might otherwise

1- We distinguish between object-based and object-oriented design. At the time, what CelsiusTech did was con-

sidered object-oriented; since then, however, that term has come to mean object-based design (i.e., design of
information-hiding modules such as abstract data types whose facilities are invoked by access pro-
grams-methods--on the interface) plus class-based inheritance (which CelsiusTech did not use).

14 CMU/SEI-96-TR-016

Previous Technical 1986 New Technical

Infrastructure - Infrastructure

Minicomputers Microcomputers

Few processors on Many processors on
point-to-point links commercial LAN

No fault tolerance Fault tolerant, redundant

RTL/2 Ada83

Waterfall life cycle, early Prototyping, iterative, incremental
attempts at incremental development

development

Structured analysis/design Domain analysis, object-based
analysis/design

Locally-developed support tools Rational development environment

Figure 4: Changing Technical Infrastructures

have been hesitant to approve the necessary up-front investments to achieve the product line
capability. On the whole, while commending CelsiusTech for staying the course in the midst of
chaos, we believe that ownership changes did not play a decisive role in the product line story
at CelsiusTech. The story does demonstrate, however, that given a bold vision and strong
leaders in the right places to carry out that vision, even the most severe organizational turmoil
can be withstood.

2.5.2 Necessity Is the Mother of Invention...

The award of two major naval contracts in 1986, ostensibly a reason for celebration, was re-
garded as the precipitation of a crisis by CelsiusTech. They immediately realized that they had
neither the technical means nor the personnel resources to prosecute two large development
efforts, each pioneering new technologies and application areas, simultaneously. Since all
CelsiusTech contracts are fixed-price, large-scale failure meant large-scale disaster, and pre-
vious less challenging systems had been over budget, past schedule, hard to integrate, and
impossible to predict. CelsiusTech was driven to the product line approach by circumstances;
they were compelled to attempt it because their company's viability was clearly at stake.

CMU/SEI-96-TR-016 15

2.5.3 ...But Determination Is the Midwife

Deciding to adopt a product line approach was one thing; executing it was quite another. It was
important that CelsiusTech committed its entire naval business to the approach rather than try-
ing to hedge its bets by only partially embracing it. Further, the commitment was maintained
by CelsiusTech's management. During the paradigm shift, when the new ways of doing things
conflicted with the old, a multitude of problems arose. Unfamiliarity breeds insecurity, and it
must have been very tempting to abandon the new approach or at least to dilute it. CelsiusTech
had strong managers in the right places to solve problems as they arose in keeping with the
new approach, to maintain the company's direction, and to make it clear that the organization
was going to stay the new course.

2.5.4 Riding a Wave of Technology Changes

In 1986, all the selected technologies indicated in Figure 4 were immature with limited use in
large, industrial settings. Large, real-time, distributed systems making extensive use of Ada
tasking and generics were envisioned but at the time were unprecedented. Object-based de-
velopment for Ada was still a theoretical discussion. Thus from 1986 to 1989, CelsiusTech was
coping with

* the maturation of immature technologies, such as Ada and object technology
* the maturation of immature supporting technology, such as networking and distribution
* the maturation of immature infrastructure technology, such as development environments

and tools to assist in the automation of the development processes
" the learning curve of the company, both technical and managerial, in the use of new

technologies and processes inherent in the product line approach
" the learning curve of customers who did not fully understand the contractual, technical,

and business approaches of product lines
* the management of requirements across several customers

These maturation issues significantly increased the time required to create the product line ca-
pability. Another organization making the same development paradigm shift today would, we
believe, be in a much less tenuous position. Microcomputers, networks, portable operating
systems, open systems standards, object-based development methods, Ada (or other pro-
gramming languages appropriate to the domain and platforms), performance engineering, dis-
tributed-systems technology, real-time operating systems, real-time analysis tools, large-
project support environments, and large-project process assistants are all either mature or at
least usable and readily available. CelsiusTech estimates that up to 1/3 of its initial technology
investment was spent building assets that can now be purchased commercially. The remaining
2/3, however, still represent a formidable investment.

16 CMU/SEI-96-TR-016

2.5.5 Product Line Creation Time

The fact that it took many years to develop the product line capability must be placed in the
context of the migration to new and immature technology, and the shifts in company owner-
ship. We would expect it to take significantly less time if undertaken in a more stable corporate
and technological environment.

CMU/SEI-96-TR-016 17

18 CMU/SEI-96-TR-O1 6

3 Architectural Foundations for the SS2000 Product Line

3.1 Requirements for an Architecture

To derive new products efficiently from an asset repository, the products must be structured
similarly so that they share components. This means there must be standard componentry
with agreements about the responsibility, behavior, performance, interface, locality of function,
communication and coordination mechanisms, and other properties of each component. This
family-wide structure, the componentry it comprises, and the properties about each compo-
nent that are constant across all members of the product line constitute the architecture for the
family.

The primary purpose of an architecture is to facilitate the building of a system that meets its
requirements; architecture is a means to this end. The architecture for each Ship System 2000
(SS2000) product line member is no exception: It must allow for the production of a system
that meets its behavioral, performance, resource utilization, and quality requirements. Howev-
er, the SS2000 architecture carries the additional burden of application to an entire class of
systems, not just an individual one. Requirements for such an architecture include the ability
to replace components with ones tailored to a particular system without disrupting the rest of
the architecture.

This section presents the technical foundations that CelsiusTech laid for the product line ap-
proach upon which it embarked. In particular, it highlights the architectural decisions that the
CelsiusTech senior designers made to meet the operational and programmatic requirements
for their family of systems.

There are many facets to an architecture, and SS200 is no exception. Each view conveys (and
suppresses) certain information and is useful for different purposes. No single view is author-
itative or complete; each presents a portion of the whole story. In the following sections, we
present different views of the SS2000 architecture, including:

* the physical architecture, which describes the networks and processor configurations on
which the software must run

* the major software components of SS2000 products, and the protocols and conventions
by which they coordinate

0 layering, which is a static structure that provides for much of the flexibility of the
architecture

3.2 Operating Environment

The requirements of modern shipboard systems influence design solutions in fundamental
ways. Sensors and weapons systems are deployed all over the ship; crew members interact
with the system through a multitude of separately housed workstations. The man-machine in-
terface must be highly tuned to facilitate rapid information flow and command acceptance and
must be tailored to the operational mission of the vessel and the cultural idiosyncrasies of its

CMU/SEI-96-TR-016 19

crew. The likelihood of component failure dictates a fault-tolerant design. In addition, the man-
machine interface varies across members of the product line, as do details of the operational
mission, hardware environments, and so forth. The software of SS2000 must meet operational
requirements of each ship as well as flexibility requirements to cover the family as a whole.

The requirement to run on a distributed computing platform has broad implications for the soft-
ware architecture. Distributed systems raise issues of deadlock avoidance, communication
protocols, fault tolerance in the case of a failed processor or communications link, network
management and saturation avoidance, and performance concerns for coordination among
tasks. When the group of developers we interviewed were asked to explain the architecture,
their first response was that it was distributed.

3.3 Physical Architecture

Figure 5 illustrates a typical physical architecture for the system. A redundant LAN is the com-
munications backbone for the system, connecting from 30 to 70 different processors that co-
operate to perform the system's work. Nodes on the LAN can total around 30; a node is the
end of a communication run and may correspond to a crew station, a weapons platform, or a
sensor suite, all located in various parts of the ship and widely dispersed. A node can host up
to 6 processors. The LAN is currently a dual Ethernet. Device interface modules send and re-
ceive data to and from the system's peripherals-primarily sensors-and the weapons sys-
tems being controlled. Multiple workstations are supported.

Each CPU on the physical architecture runs a set of Ada programs; each Ada program runs
on at most one processor. A program can consist of several Ada tasks. Systems in the SS2000
product line can consist of up to 300 separate Ada programs.

3.4 Software Architecture

This section describes the software architecture by identifying the major components of the
software, the way they are arranged to provide flexibility across the product line, and the ways
in which the components communicate and coordinate with each other.

3.4.1 System Functions and System Function Groups (SFGs)

Several types of components exist in the SS2000 architecture. Each serves a particular pur-
pose. Functional requirements are embodied in system functions. A system function is a col-
lection of software that implements a logically connected set of requirements; it may be
thought of as a subsystem. A system function is composed of a number of Ada code units,
which are the basic unit of work for a program, and the unit of combination for the Ada compiler
and environment. System functions comprise roughly 5K-25K lines of Ada. An example is a
component that handles all the ballistic calculations for a gun.

20 CMU/SEI-96-TR-016

Processor Processo ... IProcessor]

Database Database
processor processo

Standard
interface unit Gun

(electronic processor
surveillance

measures,
electronic Surface-to-air

counter- missile
measures, interface

anti-submarine
warfare, etc.)

Radar
Surface-to director

surface missile
interface

_____ _____E/O

Plot and director
target

extractor

___________Torpedo

processor

Comm
processor

Video
switch

dual Ethernet LAN

Figure 5: Typical Physical Architecture of a Ship System 2000 Product

CMU/SEI-96-TR-016 21

A system function group comprises a set of system functions and forms the basic work assign-
ment for a development team. System function groups, primarily organizational units for man-
agement, are clustered around major functional areas, including

* C3

* weapons control
* "fundamentals" meaning facilities for intrasystem communication and interfacing with the

computing environment
* man-machine interface (MMI)

System function groups may (and do) contain system functions from more than one layer.
They correspond to larger pieces of functionality that are more appropriately developed by a
large team. For example, a separate software requirements specification (SRS) is written for
each system function group.

System functions, not the Ada code units, are the basic units of test and integration for systems
in the product line. This is a crucial point. The primacy of system functions and system function
groups allows a new member of the product line to be treated as the composition of a few doz-
en high-quality, high-confidence components that interact with each other in controlled, pre-
dictable ways as opposed to thousands of small units that must be regression tested with each
new change. Assembly of large components without the need to retest at the lowest level of
granularity for each new system is a critical key to making reuse work.

Figure 6 illustrates the relationship between the various kinds of componentry SS2000 con-
sists of about 30 system function groups, each comprising up to 20 or so system functions.

3.4.2 Architecture as Layers

The SS2000 software architecture is layered, meaning roughly that

* Components are divided into groups called layers. The grouping is based roughly on the
type of information that each group encapsulates. Components that must be modified in
the event of a change in hardware platform, underlying LAN, or internode communication
protocols all form a layer. Components that implement functionality common to all
members of the family form another layer. Finally, components specific to a particular
customer product form a layer.

The layers are ordered, with hardware-dependent layers at one end of the relation and
application-specific layers at the other. Layers that are neither hardware- nor member-
specific reside in the middle.
Interactions among layers are restricted. A component residing in one layer can access
components only in its own or the next lower layer.

In Ship System 2000, the bottom layer is known as Base System 2000; it provides an interface
between the operating system, hardware, and network on the one hand and application pro-
grams on the other. To applications programmers, Base System 2000 provides a programming
interface with which they can perform intercomponent communication and interaction without

22 CMU/SEI-96-TR-016

Product line software assets

System function group

System function

Ada unit

System product

Figure 6: Units of Software Components, Adapted from Cederling [Cederling 92]

being sensitive to the underlying computing platforms, network topologies, allocation of func-
tions to processors, etc.

Each layer in the software architecture comprises a set of system functions; that is, each sys-
tem function is assigned to exactly one layer. Lowest layers include those system functions

that embody requirements independent of the ship-based application, while system functions
at the highest layer embody requirements specific to some but not all customer systems. Sys-
tem functions in middle layers embody requirements that are at various levels in between.

Note that a layer is primarily a pre-runtime entity. That is, assignment to a layer primarily de-

scribes the knowledge, or lack of knowledge, that is allowed to be reflected in the coding of

that component. Also, implementation techniques such as inline macro expansion can, at run-

time, actually allow a high-level layer to invoke quite low-level facilities directly.

CMU/SEI-96-TR-016 23

Interviews made clear that layering is a central design principle that is well promulgated
throughout the development organizations. However, it was also clear that there is more than
one rendition of the layering scheme, depending on the audience or desired level of detail. In
other words, there was no central dictionary that named the single layer to which a code unit
belonged. Rather, the layers seemed to be more of a device to help explain the product line
philosophy for insulating the system from changes in platform, network, etc., and for rapidly
producing new members of the product line. An exception is Base System 2000, which is
maintained by an organizational element devoted to it; hence, its contents constitute a specific,
well-defined layer. Figure 7 illustrates one rendering of the architectural layers of SS2000 that
we encountered; Figure 8 illustrates another, and Figure 9 yet another. They do not conflict
with each other; rather, they provide complementary explanations of the same ideas.

Customer-specific Generated where possible; contains presentation language,

applications customer-specific configuration information, etc.

Generic applications Standard computations: e.g., ballistic calculations

Technology Platform portability: operating system, hardware, file systems,

etc.

Figure 7: Layered Software Architecture for Ship System 2000

General Target Fire control anti- electronic
applications: tracking submarine counter-
100% Ada warfare measures

(ASW) (ECM)

Operator's console

Common Common
applications: applications
100% Ada

Picture Ships
compilation information

Fundamentals: Fundamentals
95% Ada, Tactical Database Diagnostics Common
language configuration functions

Base System 2000: LAN Interprocess communication
10% Ada, 90% C (IPC)

OS-2000

Base system hardware

Figure 8: A More Detailed Rendering of the SS2000 Layered Architecture

24 CMU/SEI-96-TR-016

Applications MMI Fire control Picture
compilation

Distributed database Common
layer Object

Manager
(database
repository)

Base system operating system, IPC, etc.

Figure 9: Another Description of the Architectural Layers

The existence of more than one model of the layers is of minor operational consideration, since
(except for Base System 2000) the layers do not determine job function, and a component
could probably be correctly allocated to a layer in any of the above renderings. The primary
quality of a layered system is that elements closer to the bottom are more likely to be applied
unchanged across all members of the product line1 . For SS2000, this includes software that
directly interfaces to the physical architecture and software that implements functionality com-
mon to all systems in the domain. Elements at or near the top-for example, software imple-
menting customer-specific requirements-are less likely to be generic. Hence, reusability is
enhanced when an element uses (in the sense used by Parnas [Parnas 78]) only those ele-
ments that fall at its level or below it in the layered view of the system. Otherwise, if a compo-
nent were used in a new customer product, a higher level component it relied upon may not
have transferred with it, and so this otherwise reusable component would have to be rewritten.

3.4.3 Intercomponent Coordination

SS2000 is a family of distributed systems; the components must work together in parallel in a
coordinated fashion. The coordination mechanisms used are those common to distributed Ada
systems: asynchronous message passing with conventions to reduce network traffic. Cel-
siusTech designers have identified conventions for distributed applications, some of which
have been adopted for SS2000 [CelsiusTech 92]. Other design conventions and protocols
were divulged to us in interviews. Still others are codified in a document called the Application
Interface Standard. Note how the conventions apply to both the distributed requirements of the
architecture and its product line aspects.

Tasking and communication conventions include the following:

- Tasks communicate by passing strongly typed messages. The abstract data
type and the manipulating programs are provided by the component passing
the message. Strong typing allows for compile-time elimination of whole

1 Or even beyond. Note the application of SS2000 architecture and components to the air defense system dis-
cussed in Section 2.

CMU/SEI-96-TR-016 25

classes of errors. The message as the primary interface mechanism between
components allows components to be written independently of each other's
(changeable) implementation details with respect to representation of data.

- Interprocess communication (IPC) is the protocol for data transport between
Ada applications. IPC allows communication between applications
regardless of where they reside on particular processors. This "anonymity of
processor assignment" allows processes to be migrated across processors,
for pre-runtime performance tuning, and runtime reconfiguration as an
approach to fault tolerance, with no accompanying change in source code.

- Ada tasking facilities are used.

Data-producing conventions include the following:

- A producer of a datum does its job without knowledge of whom the consumer
of that datum is. Data maintenance and update is conceptually separate from
data usage. This design dictum leads to a blackboard-style repository called
the Common Object Manager. The repository provides a subscription service
for data-consuming components, which can ask to be notified when a datum
of interest changes value. Data-producing components "write" (through
access programs or "methods" in object-oriented parlance) to the repository.
Data-consuming components (particularly the MMI software) retrieve
required data from the repository. Figure 10 illustrates the role of the
repository at runtime. Track information, carried in a very large data structure,
is passed directly between producer and consumer, by-passing the
repository for reasons of performance. Trackball information, because of its
very high update frequency, also bypasses the repository.

Track information

Updates Updates

Figu reo0: Uing(Common O e Man-

Datapitionl Object Machine
ntin tManager Interface

Update UpdateI requests requests

Trackball updates

Figure 10: Using (and Bypassing) the Common Object Manager Repository

- Data is sent only when altered. This prevents unnecessary message traffic
from entering the network.

26 CMU/SEI-96-TR-016

- To insulate programs from changing implementations, data is presented as
an information-hiding abstraction such as an abstract data type. Strong
typing allows compile-time detection of type-related errors.

- Components own the data they alter and supply access procedures that act
as monitors. This eliminates race conditions, since each datum is accessed
directly only by the component that owns it.

- Data is accessible to that all interested parties at all nodes in a system.
Assignment to a node does not affect the data to which a component has
access.

- Data is distributed so the response time to a retrieval request is short. This
also has fault-tolerance implications.

- Data is kept consistent within the system over the long term. Short-term
inconsistencies are tolerable.

* Network-related conventions include the following:

- Network load is kept low and controllable.

- Data channels are error resistant. Applications resolve errors internally so far
as possible.

- It is acceptable for an application to "miss" a data update. For instance, since
ship's position changes in a continuous fashion, a position update may be
missed and interpolated from surrounding updates.

" Miscellaneous conventions

- Heavy use is made of Ada generics, for reusability.

- Ada standard exception protocols are used.

Many of these conventions (particularly those regarding abstract data types, IPC, message
passing, and data ownership) allow a component to be written independently of many change-
able aspects over which it has no control. In other words, the components are more generic
and hence more directly usable in different systems1 .

3.5 Parameterized Components

Although components are reused with no change in code in the vast majority of cases, they
are not always reused entirely without change. Many of the components are written with sym-
bolic values in place of absolute quantities that may change from customer system to custom-
er system. For example, a computation within some component may be a function of how
many processors there are; however, the number need not be known when the component is
written. Therefore, that component may be written with the number of processors as a sym-
bolic value, a parameter. The value of the parameter is bound as the system is integrated; the

1 A treatise on the principles of information hiding and object-oriented design is beyond the scope of this paper.
See Britton et al. [Britton 81] instead.

CMU/SEI-96-TR-016 27

component works correctly at runtime, but can be used without code change in another ver-
sion of the system that features a different number of processors.

Parameters are a simple, effective, and time-honored means to achieve component reuse
[Britton 81]. However, in practice, they tend to multiply at an alarming rate. Almost any compo-
nent can be made more generic through parameterization. The componentry for SS2000 cur-
rently features 3000-5000 parameters that must be individually tuned for each customer

system built in the product line. CelsiusTech currently has little or no methodological approach
to ensure that no parameters are in conflict with each other; that is, there is no formal way to
ensure that a certain combination of parameter values, when instantiated into a running sys-
tem, will not lead to some sort of illegal operating state.

The fact that there are so many parameters in fact undermines some of the benefits gained
from treating large system functions and system function groups as the basic units of test and
integration. As parameters are tuned for a new version of the system, they produce a version
of the system that has never before been tested. Each combination of parameter values may
theoretically take the system into operating states that have never before been experienced,
let alone exhaustively tested.

In practice, the multitude of parameters seems to be mostly a bookkeeping worry; there did
not appear to be any experience with incorrect operation that could be traced back to the pa-
rameter situation. Often, a large component is imported with its parameter set left unchanged
from its previous utilization. However, there is clearly a need for some sort of technology that
will help provide assurance about which combinations of parameters will or will not result in
illegal states or states that have not yet been adequately tested.

3.6 Analysis

3.6.1 Maintaining the Component Base

Although we will discuss this more fully in Section 4 and Section 5, it is important to underscore
that the enduring product at CelsiusTech is not an individual ship system for a specific custom-
er or even the set of systems deployed so far. Rather, the central task is viewed as maintaining
the product line itself. Maintaining the product line means maintaining the reusable compo-
nents in such a way that any previous member of the product line can be re-generated (they
change and evolve and grow, after all, as their requirements change) and future members can
be built. In a sense, maintaining the product line means maintaining a capability, the capability
to produce products from the assets. Maintaining this capability means keeping the compo-
nents up to date and generic with respect to their instantiation in individual systems. No prod-
uct is allowed to evolve in isolation from the product line asset base.

Not every component is used in every member of the product line. Cryptologic and human-
interface requirements differ so widely across nationalities, for instance, that it makes more
sense to build components that are used in a few systems. In a sense, this yields product lines

28 CMU/SEI-96-TR-016

within the major product line: a Swedish set of products, a Danish set of products, etc. Some
components are used but once; however, even these are maintained as product line assets,
designed and built to be configurable and flexible in case a new product is developed that can
make use of them.

Externally, CelsiusTech builds ship systems. Internally, it develops and grows a common asset
base that provides the capability to turn out ship systems. This mentality-which is what it
is-might sound subtle, but it manifests itself in the configuration-control policies, the organi-
zation of the enterprise, and the way that new products are marketed. We will discuss all of
these issues in more detail elsewhere in this report.

3.6.2 Enabling Technology

Several technical advances have come together to help (but not enable) a product line ap-
proach to work. They include

" Memory has become cheap. This means that, unlike embedded systems of the 1970s and
1980s, dead code' in modern systems is not automatically a prohibitive waste of
resources. Further, memory efficiency, which sometimes suffers under object-oriented
implementation schemes, is not an overriding concern, and thus the designers are more
free to build components that are more abstract with respect to the problem they are being
used to solve.

* Off-the-shelf processors are robust and inexpensive, and network technology is stable
and reliable so that adding processors to a network is not prohibitive. Again, unlike
embedded systems in previous years, there is no overwhelming need in modern systems
to keep the number of processors on a ship to a minimum. In addition to easing some of
the performance constraints, this facilitates building a product line whose products work
on different numbers of processors.

* Networks are reliable and robust, and network management systems encapsulate many
of the hard issues associated with operating on a network. This facilitates building a
product line whose products work on different network configurations.

* Ada allows object-oriented programming, providing a built-in infrastructure for designing
generic components and specifying public interfaces and private implementations.

1. "Dead code" refers to instructions that are loaded in memory but are never executed. It may come about as the

result of making a component generic with respect to the individual products in which it is used. For example

if ship-class = swedish_corvette then do; ... end;

else if ship-class = swedishsubmarine then do; ... end;

else if ship-class = anzacfrigate then do; ... end;

and so forth. A component containing this code can be used, unchanged, on any of the ship classes it men-
tions, but on each ship class only one of the do-groups will be executed. In practice, CelsiusTech systems have
little if any dead code in their fielded products; macro preprocessing can eliminate unnecessary instructions
such as the ones in this example.

CMU/SEI-96-TR-016 29

Open systems are becoming the norm. Machine portability, network independence, and
remote procedure call (allowing flexibility about allocating processes to processors) are
becoming accepted practice. This facilitates building a product line whose products run
on different computers, different operating systems, and infrastructure provided by
different vendors.

3.6.3 Architecture Was the Foundation

Although we emphasize in this report that technical approaches to achieving a product line ca-
pability are insufficient without taking into account business, organizational, and process is-
sues as well, it remains a fact that the architecture for SS2000 provided the means for
achieving the product line capability. Toward this end, abstract design and layering were vital.
Abstract design allowed components to be created that encapsulated changeable decisions
within the boundaries of their interfaces. Where the component is used in multiple products,
the changeable decisions are instantiated where possible by parameterization. Where the
component may change across time as new requirements are accommodated, the change-
able decisions held inside the module assure that wholesale changes to the asset base are
not needed.

Note that the architecture itself, while the keystone to the whole enterprise, is a fairly pedes-
trian one by the standards of software engineering literature (and to a somewhat lesser extent,
by the standards of current software engineering practice). The layered architecture is a clas-
sic one for operating systems, for instance, providing "layers of virtual machines" that are clos-
er and closer to the hardware at the lower levels. Real-time embedded systems using layering
and information-hiding modules (the precursor of objects) are uncommon but not unprece-
dented; see Parnas et al. [Parnas 85], for example.

Nevertheless, the size and complexity of this architecture and the components that populate
it make clear that understanding of the application domain is required to partition a system into
modules that (a) can be developed independently; (b) are appropriate for a product line whose
products are as widely varied as those in SS2000; and (c) can accommodate future evolution
with ease. In Section 4, we will discuss the team that created the architecture, but we note here
that a thorough domain analysis is essential before embarking on the architectural design
phase. In the case of CelsiusTech, the domain analysis flowed from years of previous work on
shipboard computer systems; the domain models were manifested in the expertise of the ar-
chitects.

3.6.4 Maintaining Large Pre-integrated Chunks

In the classical literature on software reuse repositories, the unit of reuse is typically either a
small fine-grained component (such as an Ada package, a subroutine, or an object) or a large-
scale independently executing subsystem (such as a tool or a commercial stand-alone prod-
uct). In the former case, the small components must be assembled, integrated, configured,
and tested after checking out; in the latter case, the subsystems are typically not very config-
urable or flexible.

30 CMU/SEI-96-TR-016

CelsiusTech took an intermediate approach that makes much more sense. The unit of reuse
is a system function, a thread of related functionality that comprises elements from different
layers in the architecture. System functions are pre-integrated-that is, the components they
comprise have been assembled, compiled together, tested individually, and tested as a unit.
When the system function is checked out of the asset repository, it is ready for use. In this way,
CelsiusTech is not only reusing components, it is also reusing the integration, component test,
and unit test effort that would otherwise have to be needlessly repeated for each application.

3.6.5 Managing Configuration Parameters

The multitude of configuration parameters raises an issue that may well warrant serious atten-
tion. Formal models for parameter interaction (that would identify legal and illegal configura-
tions) would solve the problem, but might be too powerful a solution for the problem. Only a
small proportion of the possible parameter combinations will ever occur. However, there is a
danger that unwillingness to "try out" a new parameter combination could inhibit exploiting the
built-in flexibility (configurability) of the components.

CMU/SEI-96-TR-016 31

32 CMU/SEI-96-TR-016

4 Organizational Factors

In this section, we report on the organizational-related practices used at CelsiusTech and our
observations of their importance to the company's success with product lines. CelsiusTech's
organizational structure and practices have not remained constant over the past 10 years. Our
investigation identified several distinct structures. The kind of knowledge and skills required of
the staff also were found to have changed during the past 10 years. In this section, we first
characterize the organizational structure, then we describe the staff profiles, knowledge, and
skill sets. Our analysis concludes the section.

4.1 Previous Project Organization

The previous development efforts for the naval command-and-control system (Mk2.5) were
headed by a project manager who used the services of various functional areas, such as
weapons or 03, to develop major segments of system capability. Figure 11 shows the organi-
zational structure used during the Mk2.5 period. Each functional area was in turn led by a func-
tional area manager who had direct authority for staff resources and for all system-
development activities through release to system integration. Functional area managers did
not report to the project manager in terms of line responsibility, but were loaned to the project.

Project manager

Command

and control Mk2.5

Integration Project

Project manager_ Manager

Tracking

Interatigroup

Project manager Project manager Project manager Project manager

Communi- Operator's Base System
cations console system integration

Integration group Integration group Integration group Integration group

Figure 11: Mk2.5 Project Organization (1980 -1985)

CelsiusTech found that this compartmentalized arrangement fostered a mode of development

characterized by

CMU/SEI-96-TR-016 33

" assignment of major segments of the system to their respective functional areas as part
of system analysis

* requirements and interfaces allocated and described in documents with limited
communication across functional area boundaries. This resulted in individual
interpretations of requirements and interfaces throughout design, implementation, and
test

" interface incompatibilities typically not discovered until system integration, resulting in
time wasted assigning responsibility and a protracted, difficult integration and installation

* functional area managers having little understanding of the other segments of the
systems

* limited incentives for functional area managers to work together as a team to resolve
program level issues typical of any large system development

4.2 SS2000 Organization, 1986 to 1991

With the advent of the SS2000 product line in late 1986, a number of organizational changes
from the Mk2.5 project organization were put into place. Figure 12 shows the organizational
structure that CelsiusTech used from 1987 to 1991 for the creation of the product line. A gen-
eral program manager was designated to lead the program. He was responsible for both the
creation of the product line and the delivery of customer systems built in the product line. Cel-
siusTech sought to remedy the problems associated with the compartmentalized structure of
the past by creating a strong management team focussed on the development of the product
line as a company asset rather than on "empire building." To this end, functional area manag-
ers now reported directly to the general program manager. Developers were assigned to func-
tional areas (weapons, C3, or MMI), common services (used by the functional areas), or the
Base System.

A small, technically focused architecture team with total ownership and control of the architec-
ture was created. The architecture team reported directly to the general program manager.
CelsiusTech determined that the success of a product line hinged on a stable, flexible, and vi-
able architecture, requiring visibility to and authority from the highest levels of management
[Brooks 95].

CelsiusTech identified the coordinated definition and management of multiple releases as cen-
tral to the creation of a product line and determined that high-level management visibility was
essential. To improve support for their release management, CelsiusTech combined the soft-
ware/system integration and configuration management (CM) activities into a new group, re-
porting directly to the general program manager.

Both the architecture team and the integration/CM group were novel approaches for Cel-
siusTech and factored heavily in the creation of the SS2000 product line. Each is further de-
scribed below.

34 CMU/SEI-96-TR-016

SS2000 General
Program Manager Marketing

customer
Architecture Project Integration and

Team CM TeamManagement

- authority, responsibility for - manages individual - drives iterations
product line architecture customer products built - manages asset integrity
definition, integrity, and in the product line and consistency across
evolution asset base projects within product line

- small (<10), technically-
orientedic l M, Weapons I Common Bs

Services SyBsem

Product Line Software Development Teams

Figure 12: SS2000 Organization, 1987- 1991

4.2.1 Architecture Team

The architecture team was responsible for the development of the initial architecture and con-
tinued ownership and control of the product line architecture, thus ensuring design consisten-
cy and interpretation across all functional areas. Specifically, the architecture team had
responsibility and authority for

* creation of the product line concepts and principles
* identification of layers and their exported interfaces
* interface definition, integrity, and controlled evolution
* allocation of capability, system functions, to layers

* identification of common mechanisms or services
* definition, prototyping, and enforcement of common mechanisms such as error handling

and interprocess communication protocols
* communication to the project staff of the product line concepts and principles

The architecture team was not a committee or engineering review board. Rather, the team was
a small group (10) of full-time senior engineers with extensive domain and engineering expe-
rience. The first iteration of the architecture was created by two senior engineers over a two-
week period and remains as the framework for the existing product line. The first iteration in-
cluded the organizing concepts and layer definition, as well as identification of approximately

CMU/SEI-96-TR-016 35

125 system functions (out of the current set of 200), their allocation to specific layers, and the
principle mechanisms for distribution and communication. After completion of the first iteration,

the architecture team was expanded to include the lead designers from each of the functional
areas.The full architecture team then continued to expand and refine the architecture, in sharp
contrast to the past when functional areas had autonomy for the design and interfaces for their
area.

4.2.2 Combined Integration and Configuration Management Team

The combined integration and CM team was responsible for

* development of incremental build schedules (in conjunction with the architecture team)
* integration and release of valid subsystems
* CM of development libraries
* CM of customer release libraries

* development of test strategies, plans, and test cases beyond unit test
" coordination of all tests runs
* creation of software-delivery medium

For the SS2000 program, the integration and CM functions were centralized rather than dis-
tributed as in the Mk2.5 systems. The combined integration and CM team was not an organi-
zational artifact in which two functions were "co-located" under the same manager.
CelsiusTech redefined these functions into a fundamentally new entity to support the continual
integration aspect of its development approach more effectively. Developers no longer con-
trolled the CM of their development artifacts. Rather, the combined integration/CM team man-
aged and controlled development and release libraries. Senior development engineers formed
the core of this group. Integration and CM were not merely clerical functions, but a foundational
engineering function, and the integration/CM team performed it accordingly.

4.3 SS2000 Organization 1992 to 1994

From 1992 to 1994, the emphasis increasingly shifted from the development of the architec-
ture and product line components to the composition of new customer systems from the prod-
uct line assets. This trend increased the size and responsibilities of the customer project
management group. CelsiusTech modified its organizational structure to assign the develop-
ment staff to one of the following:

component projects that develop, integrate, and manage product line components. The
production of components was distributed across component project areas consisting of
the functional areas (weapons, C3, and MMI), common services, and the Base System
2000. Component project managers were rotated regularly, providing middle
management with a broader understanding of the product line. The components are
provided to the customer projects.

36 CMU/SEI-96-TR-016

customer projects that are responsible for all financial management, scheduling and
planning, and technical execution from requirements analysis through delivery for their
customer's product. Each customer system built in the product line was assigned a project
manager who was responsible for all interactions and negotiations with the project's
customer. Project managers were also required to negotiate customer requirements
across all product line users.

The architecture team and the integration and CM team remained. The former became re-
sponsible for managing the disciplined evolution of the product line assets; the latter handled
all test, integration, and delivery functions.

4.4 SS2000 Organization Since 1994

As CelsiusTech has completed the basic product line asset base and gained further experi-
ence using it, it has moved to the identification of more efficient ways to produce systems and
tailor the product line to take advantage of newer technology and changing customer-mission
needs. This resulted in the 1994 organizational structure shown in Figure 13.

Naval Air defense
business business

unit unit
System definition group System definition group

Development Research & Reports to VP of

C2 development Technology
group

I W eapons

_ _ _ _ _ _ _ _ _

;) Chaired by VP of
MMI Technical X Technology

steering
Global resource to group Representatives from
all business units all business units

Figure 13: SS2000 Organization Since 1994

Each major application domain (naval and air defense1) became its own business unit with its
own manager. Each business unit has a marketing group, proposal group, customer projects,

1 In 1992, through the acquisition of Ericsson's Command and Control division, CelsiusTech began applying the
naval product line technology to the air defense domain.

CMU/SEI-96-TR-016 37

and systems definition group. The business unit owns the components and customer project
managers. Each business unit's operations are guided by a set of consistent plans: marketing,
product, and technical/architecture. The marketing group is responsible for the marketing plan
that describes the business unit's marketing opportunities and value of each market segment.
The product plan describes the products that the business unit sells and is owned by the pro-
posal group. The product plan implements the marketing plan. The system definition group is
responsible for the technical/architecture plan for its business unit. The technical/architecture
plan in turn implements the product plan, outlining the direction for evolution of the business
unit's architecture. New project proposals take into account the business unit's product plan
and technical/architecture plan. For the naval business unit, this approach keeps the projects
aligned with the product line.

Components are supplied by the Development Group. Any customer-specific tailoring or de-
velopment is managed from the business-unit customer project using development resources
matrixed from the Development Group.

The business unit's Systems Definition Group is responsible for the architecture. This group
owns and controls the evolution of the architecture and major interfaces and mechanisms. For
the Naval Business Unit, the Systems Definition Group is a small group (typically six members)
of senior engineers with extensive knowledge of the naval product line. The group remains re-
sponsible for overall arbitration of customer requirements and their effect on the product line.

The Naval Business Unit has created a SS2000 Product Line Users Group to serve as a forum
for shared customer experiences with the product line approach and provide direction setting
for future product line evolution. The users group includes representatives from all SS2000
customers worldwide.

The Development Group provides developer resources to all business units. Integration, CM,
and quality assurance resources are also a part of the Development Group and are matrixed
to the business units as required. To further optimize the creation of new systems from a prod-
uct line, a Basic SS2000 Configuration Project was recently formed. The goal is the creation
of a basic, pre-integrated core configuration of approximately 500K SLOC, complete with doc-
umentation and test cases that would form the nucleus of a new customer system.

The Technical Steering Group (TSG) became responsible for identifying, evaluating, and pilot-
ing potential new technology beneficial to any of CelsiusTech's business areas. The TSG is
headed by the vice president of technology and staffed by senior technical personnel from the
naval and air defense business units, Development Group, and the R&D Group. The TSG also
ensures that each Systems Definition Group creates and evolves their architecture and tech-
nology plan.

4.5 Staffing Characteristics During 1986 to 1991

Figure 14 shows the software developer staff levels from 1986 through 1996. During the for-
mative years of the product line, 1986-1991, the software staff levels ranged from 20 to 30 ini-

38 CMU/SEI-96-TR-016

tially up to a peak of 200. During these earliest years of the program when the product line

concepts and architecture were being defined, CelsiusTech found that the staff levels were too

high while concepts and development approaches were in a state of flux.

200 = - =

180= = =

160= =

140 -- --

120= = =

100 - -

80

60 - -

40

20 =..

0-
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

Figure 14: Approximate Software Staff Profile

4.5.1 Technical Skills and Knowledge

The architecture team was responsible for the creation of the framework and specific building
codes (interface standards, design conventions, etc.) used in a product line. Team members
needed solid domain and customer-usage knowledge. This knowledge was combined with ex-
cellent engineering skills and an ability to look and think broadly to find relevant common
mechanisms or product line components. Communication and teaming skills were also man-
datory.

Developers needed to understand the framework and building codes and how their respective
components should fit. During the formative period of the product line, the development staff
required skills in the use of Ada, object-based design, and their software development envi-
ronment, including the target testbed. In addition, broad areas of knowledge were required:
product line concepts, SS2000 architecture and mechanisms, creation of reusable compo-
nents, incremental integration, and at least one functional area domain.

CMU/SEI-96-TR-O1 6 39

Integration and CM team members required a solid knowledge of the product line architecture,
past domain systems experience, the Rational Environment, CelsiusTech's integration and re-
lease process, and Ada. Integration and CM were viewed as a single engineering function.
The early team members had development experience with the previous systems and the
SS2000 system. They were highly skilled, results-oriented engineers. Part of the responsibility
of the integration and CM team was to forge an efficient process for development and custom-
er releases. During this time, each customer system had three to five team members with re-
sponsibility for all aspects of integration, test, and CM.

4.5.2 Management Skills and Knowledge

With much of the necessary technology immature, the management team (and senior techni-
cal staff) were operating, to large degree, on faith in the achievement of a shared ultimate ca-
pability. A key focus of their responsibilities included "selling" the business need and the
desired future state to their teams.

Organizations attempting to transition immature technology encounter resistance to the tech-
nologies as the inevitable problems with the technologies arise. Key to sustaining the early
phases of such transitions are strong, solutions-oriented managers. For example, the general
program manager focused on finding solutions rather than finding fault with the various imma-
ture technologies, their suppliers, or the development team. He encouraged managed exper-
imentation rather than penalizing it, and he supported technical innovations. The general
program manager became a role model for other managers to follow.

Managers in the formative years of the product line required strong knowledge of the product
line concepts, the technical concepts to be applied, and the business rationale for the product
line approach. In addition, they needed strong planning, communication, and innovative prob-
lem-solving skills.

Management also had to cope with the inevitable discontent and resistance associated with
the transition to a new business paradigm and attendant technology. Substantial effort was
made to help personnel understand the new business strategy and rationale. People who did
not subscribe to or could not grasp the product line approach either left the company or found
assignments on maintenance or other projects. This caused loss of domain knowledge that
took time to re-develop.

4.6 Staffing Characteristics for 1992 to 1994

By the end of 1991, four customer systems were under way. Not only did reusable components
exist, but CelsiusTech had delivered them as part of the two original systems. The basic prod-
uct line was maturing rapidly. Instead of being built from all new components, systems were
now composed from existing product line components on an increasingly routine basis. Over-
all software staff levels began declining (refer to Figure 14). Designers were needed less and
were reassigned to other projects within the company. With the increase in parallel customer

40 CMU/SEI-96-TR-016

projects, more integrators were needed, although the average of three to five integrators per
customer system remained steady. During this period, the number of management staff did
not decrease due to the increasing number of projects.

4.6.1 Technical Skills and Knowledge

With greater emphasis on the composition of systems from the product line assets, developers
needed stronger domain and SS2000 product line knowledge than during the creation of the
product line. The use of Ada, object technology, and the development environment had be-
come more routine. The integration group focus turned to the integration and release manage-
ment of many parallel systems. Increasing emphasis was placed on reusing test plans and
data sets across customer systems. With integration and release management now routine,
more junior staff could augment and start replacing the more skilled engineers used in the for-
mative years.

The architecture team had to maintain a solid knowledge of the product line and factor in the
growing set of current and approaching customer-mission needs. Communication skills with
customer project managers (for negotiation of multiple customer needs) and developers (de-
siring to optimize major interfaces and mechanisms) continue to be extremely important. En-
gineering skill to balance new needs yet preserve the overall architectural integrity are vital for
team members.

4.6.2 Management Skills and Knowledge

As more of the product line was available, less emphasis on technology maturation and train-
ing was required of management. With more customer systems existing, the coordination of
changing customer (existing and new) requirements across multiple customers emerged as a
major management focus and priority. Requirements negotiation involved not only customers
but also other customer project managers and the product line architecture team. Customer
project managers required increasing skill in negotiation and knowledge of the existing and an-
ticipated future directions of the product line.

4.7 Staffing Characteristics Since 1994

Since 1994, the staffing profile has continued to change. As the product line and its use have
further matured, CelsiusTech's software staff levels have declined dramatically, as Figure 14
on page 39 shows. The current software staff level is at a modest 50. CelsiusTech has used
fewer designers, developers, and integrators for the two most recent customer systems. Even
fewer designers are needed, potentially moving to the other business unit. The downward
trend is most notable in the area of integration. For the two newest customer systems, Cel-
siusTech has budgeted for an integration staff of one or two per system. Continuing system
composition optimizations, such as the Basic SS2000 Configuration Project, are expected to

CMU/SEI-96-TR-016 41

further reduce the development-related staff levels. With the continued increase in parallel
customer projects, the number of management staff remains constant.

4.7.1 Technical Skills and Knowledge

Developers continue to need strong domain and SS2000 product line knowledge with the em-
phasis on composing systems rather than building systems.

The architecture team now must maintain a solid knowledge of the product line, current and
approaching customer-mission needs, and advances in relevant technology. This knowledge
must then be balanced with engineering skill as the architecture and its major interfaces and
mechanisms continue to evolve. For example, CelsiusTech is currently in the process of up-
grading its user-interface technology to exploit X-Windows and Motif. The architecture team
has been involved in technical evaluations, prototype development of new interfaces (both for
the external user and for application developers), and assessing the effect of the new technol-
ogies on the product line.

4.7.2 Management Skills and Knowledge

Management focus continues on the coordination of changing customer (existing and new) re-
quirements across an increasing number of customers. Negotiation skills remain vital for cus-
tomer project managers. Managers must also not only retain a current knowledge of the
existing requirements but must increasingly be aware of anticipated future directions for the
product line.

4.8 Analysis

Since 1986, CelsiusTech has evolved from a defense contractor providing custom engineered
point solutions to essentially a commercial-off-the-shelf (COTS) vendor of naval systems. Cel-
siusTech found that the old ways of organizational structure and management were insufficient
to support the emerging business model. CelsiusTech found that achieving and sustaining an
effective product line was not simply a matter of the right software and system architecture,
development environment, hardware, or network. Organizational structure, management prac-
tices, and staffing characteristics were also dramatically affected.

CelsiusTech's organizational changes to create the product line were heavily influenced by les-
sons learned from the Mk2.5 integration and management difficulties, emerging understand-
ing of the vital nature of architecture to a product line, and awareness of the risks involved with
amount of new technology.

4.8.1 Creating an Architecture

The architecture served as the foundation of the approach, both technically as well as cultur-
ally. In some sense, the architecture became the tangible thing whose creation and instantia-

42 CMU/SEI-96-TR-016

tion was the goal of all of the component work. Because of its importance, high visibility was
important. A small high-powered architecture team had authority as well as the responsibility
for the product line architecture. Because of this, the architecture achieved the "conceptual in-
tegrity" cited by Brooks as the key to any quality software venture [Brooks 95].

4.8.2 Maintaining an Architecture

Defining the architecture is only the beginning of achieving a foundation for a long-term devel-
opment effort. Validation through prototyping and early use was essential. When deficiencies
were uncovered, the architecture had to evolve in a smooth, controlled manner throughout ini-
tial development and beyond. To manage this natural evolution, CelsiusTech's integration and
architecture teams worked together to prevent any designer or design team from changing crit-
ical interfaces without explicit approval of the architecture team. This approach had the full
support of project management; this working arrangement was supported by the authority
vested in the architecture team through the organization of the company. The architecture
team thus became a centralized design authority that could not be circumvented. The concep-
tual integrity was maintained.

4.8.3 Creating Versus Maintaining a Product Line

The organization that is used to create a product line is different from that needed to sustain
and promote the evolution of a product line. Management must plan for changing personnel,
management, training, and organizational needs. Architects with extensive domain knowledge
and engineering skill are vital to the creation of viable product lines. Domain experts remain in
demand as new products are envisioned and evolution of the product line is managed.

4.8.4 Managing Change

The effect of change on an organization of product line development is far greater than even
such transition-intensive technologies such as Ada or object technology. Everything is subject
to change: management, organizational roles and responsibilities, training, personnel skills
and experience, development processes. A program manager must be concerned with posi-
tioning the organization for tomorrow's potential needs as well as today's customer require-
ments.

The development of the product line, its parallel use on several initial customer products, and
significant new technology caused much upheaval for management and development staff.
The visionary management of the initial SS2000 general project manager, we believe, was in-
strumental in these formative years of the product line approach. In the mid-1 980s, developing
a product line for such a large and varied domain with life-critical reliability and real-time per-
formance had not yet been attempted.

Management provided incentives for long-term strategies by supporting technical innovations.
Managers encouraged experimentation in management style. Throughout all the chaos in the

CMU/SEI-96-TR-016 43

initial years, the management focus stayed clear and on the goal. While this may appear quite
esoteric, we see these visionaries as vital to the success of organizations taking on new busi-
ness and technical approaches.

Managing change is the focus of Chapter 6.

44 CMU/SEI-96-TR-016

5 Processes, Methods, and Tools

While some organizations treat processes, methods, and tools as distinct concepts, Cel-
siusTech does not. Rather, CelsiusTech takes an engineering approach and thinks about pro-
cesses, methods, and tools as a synergistic whole, which we will refer to as their "development
approach." In this section, we summarize the processes, methods, and tools that played a sig-
nificant role in the formation and use of the SS2000 product line. We first characterize the de-
velopment approach used before the development of the product line on earlier CelsiusTech
systems.

5.1 Software Development and Processes Before the Product Line
Approach

With the previous systems, such as the Mk2.5, a traditional waterfall life cycle following the
1978 U.S. military standard MIL-STD-1679 [DoD 78] was used. Software definition or require-
ments analysis, top-level design, detailed design, coding, unit testing, integration, and delivery
were the sequential stages a project followed. Activities of each stage were generally complet-
ed before the subsequent stage was begun. The primary results of each stage were docu-
ments and formal reviews, particularly early in the life cycle. Design focused on the stepwise
refinement of subsystems into successively smaller components ending with source-code
units. Code units were integrated once all units were implemented-late in the life cycle. The
result was late discovery of significant problems leading to a scenario of late delivery, cost
overruns, reduced functionality, reduced quality, and dissatisfied customers.

In the early 1980s, CelsiusTech developed new systems by re-using developers who modified
existing systems. Previous structures formed the basis of a new system; developers used
code from previous systems with modifications as needed. In time, a new system would inherit
structures, design decisions and constraints, and code, potentially from several parent sys-
tems. While this approach was conceptually similar to a product line approach, there are im-
portant differences. Each working system was designed and implemented without
consideration of future uses and needs. With each successive descendant, a potentially in-
creasing amount of the parent system required redevelopment. Maintenance was needed for
each individual system rather than being leveraged across all descendants. Reuse was ad hoc
and purely opportunistic. Although not product line development, this early development strat-
egy laid the foundation for the subsequent product line paradigm.

5.2 Development Approaches, 1986 to 1990

The period 1986 through 1990 marked the time during which CelsiusTech made the business
decision to create a product line and delivered the first functional system to the Danish navy
for shipboard installation and sea test. Figure 15 shows a timeline for this period with key de-
velopment activities. Part of the product line business decision was the evaluation of Cel-
siusTech's existing development processes, methods, and tools during early 1986. The

CMU/SEI-96-TR-016 45

technology evaluation resulted in the identification of a next-generation development infra-

structure during the remainder of 1986 and early 1987. Creation of the product line architec-
ture was the primary focus of activity during 1987, followed in 1988 through 1990 by the

development of a sufficient functional set of product line components for the first shipboard in-
stallation.

Development
infrastructure

Product line
architecture

conceptualization

Architecture xO x¢
validation

Asset
development

1986 1987 1988 1989 1990

Figure 15: Timeline for Early Product Line Development

The following subsections, chronologically organized, summarize the evolution of the develop-
ment approach CelsiusTech used to accomplish the activities for this period. Bear in mind that
since no defined and validated development approach existed in 1986, CelsiusTech was chart-
ing new territory. CelsiusTech's development processes, methods, and tools remained dynam-

ic in order to respond to new and changing needs. Three overarching questions guided their
selection of processes, methods, or tools:

1. Did the approach contribute to achieving the business objective of product lines?

2. Did the approach contribute to maintaining a central architecture for the product line?

3. Did the approach scale to large, geographically distributed, parallel teams?

1986: Identification of development infrastructure and initiation of product line
requirements analysis

The contracts for the original two systems specified the use of RTL/2, structured analysis and
design, and the use of CelsiusTech's VAX-based proprietary development environment. Noth-
ing regarding product lines was specified. With the change in business and technical strategy

came the need to re-examine available technology. A small group of senior technical staff be-
gan investigating various candidate technologies to form the next-generation development in-
frastructure for the product line.

46 CMU/SEI-96-TR-016

CelsiusTech determined that the investment in the creation of a new infrastructure would re-
quire its use for a long time. Thus, the choice of language and development environment was
very important. After careful evaluation, CelsiusTech decided to use a commercially available
development environment, from Rational Software Corporation, providing state-of-the-art Ada
support, thus influencing the language decision. Senior technologists at CelsiusTech had fol-
lowed the development of Ada and felt that it showed promise as an implementation language
for large, long-lived systems.

The Rational Environment and Ada were evaluated through a pilot effort using an actual Swed-
ish army project involving 7 developers and resulting in 55,000 lines of Ada code. The pilot not
only validated the technology but also provided CelsiusTech with developers more experi-
enced with the chosen technologies.

As part of the development infrastructure, CelsiusTech identified the need for a strong require-
ments-management and traceability capability for the product line assets. Processes and au-
tomated support were investigated, although limited tools were available in 1986 that were
capable of supporting the size of the SS2000 program. CelsiusTech decided to use a VAX-
based hypertext documentation tool to support a product line requirements database and doc-
umentation. The database would also support the traceability of requirements to specific cus-
tomer system products.

In addition to the choice of language and development environment, a number of key develop-
ment process issues were under consideration by senior technical and management staff but
were not resolved, integrated into their development processes, or broadly disseminated.
These included

" iterative development and continuous integration processes

* the development library structure and iteration-build management

* the central role of software architecture for product lines
* the possible use of object-based design

* CM and release management

During 1986, CelsiusTech started the requirements analysis at the system and software levels
for the first two systems concurrently. This would form the basis of the domain analysis for the
product line. The SS2000 program initially used a real-time structured analysis (SART) meth-
od developed by Ward and Mellor [Ward 85] but with limited success. CelsiusTech found SART
better suited to systems with well-defined functionality and a small number of external stimuli.
This was not the case for the application domain, in which CelsiusTech had a large number of
events and partially specified requirements. While CelsiusTech had made a sizable investment
in attempting to use the structured analysis method, it was not wasted. Although they would
still need to identify the commonalities for the product line, the exercise provided the architects
and designers with a better understanding of the systems they would need to build.

The year 1986 ended with the tool choices mostly completed. The life-cycle process had been
established at the senior levels but not widely promulgated nor translated into details. The

CMU/SEI-96-TR-016 47

method choices were only partially stable. The considerable debate regarding a practical map-
ping of structured analysis into an object-based design had just begun.

1987: Further product line requirements analysis and creation of product line
architecture

With the importance of the product line architecture conceptually established, focus on the de-
velopment approach into three major (and overlapping) stages began in 1987. Product line ar-
chitectural conceptualization occurred when the architects' domain knowledge was coalesced
with the requirements analysis of the initial two ships, leading to the creation of the initial ar-
chitecture. Product line architectural validation involved validating and refining the product line
architecture by building key interfaces and mechanisms and designing the system function
groups in more detail. Product line asset development followed, resulting in production of most
of the product line assets.

Key activities during the architectural conceptualization stage for the product line included

" capturing domain understanding of operational capability. Although many resources were
focused on the requirements analysis of the first two ships, CelsiusTech had made little
progress on capturing the domain knowledge for the product line and had made no
progress on forming the architecture-a case of "analysis paralysis." SS2000 program
management intervened to change the current emphasis from analysis of specific ships
to development of a product line architecture from which ship-specific products could be
built. The first step in creating the product line architecture was to establish the initial
architecture team of two people. Their first task was to identify and document the
similarities and differences of operational requirements for systems in their domain, based
on previous experience, the two initial systems, and potential future systems. This task
resulted in a set of main operational function groups (MOFGs), categories of
specialization and generalization of functionality for customers (e.g., system independent,
customer dependent), and assigning of MOFGs to specialization/generalization
categories.

" capturing necessary basic services or mechanisms of the domain. Based on previous
system experience, the architecture team identified and documented those common
services, such as radar track management or distributed process communication,
required of command-and-control or weapons systems in the application domain. The
identified common services added to the domain requirements for the product line.

" creating the product line requirements database. Product line requirements and
customer-unique requirements were captured in the documentation database.

* identifying the product line architectural structure and unit of reuse. The early architecture
team established the architecture layers (approximately 12) based on identified levels of
specialization or generalization of required functionality or services for the product line
and individual systems. The unit of reuse, and thus the building blocks of the product line,
was based on a conceptual entity (the system function) that provided a capability
recognizable to a customer. The architectural components of system functions and
system function groups were established. The unit of reuse would also be the unit of CM.

48 CMU/SEI-96-TR-016

* allocating system functions to specific layers in the product line architecture. The
architecture team identified the basic set of system functions (125 initially). The system
functions captured the product line requirements. Ada package specifications were used
to capture system function interfaces.

" identifying critical interfaces between major layers of the architecture. Relationships
between the basic set of system functions were established. Interfaces at major layers
were identified. The critical interface definitions also used Ada package specifications.

* ensuring product line architecture and design consistency and integrity. Rational
Subsystems concept and environment support were used to capture the product line
architecture including the critical interfaces and relationships between the layers.

As the product line requirements and architecture, basic set of system functions, and critical
interfaces were identified, the architectural validation stage began. Principal activities were

* prototyping of critical interfaces and the key common mechanisms. Since the product line
capability would depend on the use of key interfaces and mechanisms, particularly those
at the lower layers of the architecture, CelsiusTech determined that it would be important
to stabilize and promote their maturity as quickly as possible. For example, construction
on the Base System 2000, the lowest layer of the architecture, began with emphasis on
characterizing and validating the distributed, fault-tolerant target hardware. Prototyping of
the IPC mechanism was begun. The IPC prototypes indicated changes in the interface.
Further operating-system and compiler support for the IPC were also identified.

* expanding the set of system functions. The architecture team membership grew to include
senior designers from each major functional area of the product line architecture. The
basic set of system functions was expanded by the architecture team to cover all mission
application areas through further design. By late 1987, nearly all of the approximately 200
system functions were identified. Ada package specifications were also used to document
the design within a system function.

* validating the architecture. The architecture was validated through building actual parts of
the product line component asset base. A layer was developed with both a top-down
perspective (to establish and extend the requirements for the layer and its interfaces) and
a bottom-up perspective (to validate and build upon the interfaces of lower layers). The
Rational Environment was used for all Ada development, which accounted for 97% of the
total system.

* creating the documentation for the product line. Documentation was defined early as a
reusable asset. CelsiusTech worked to compose new system documentation from a
documentation database rather than creating the documentation for each system from
scratch. Thus, documentation as well as software was created as a product line.
Documentation entered around CelsiusTech's architectural components (system
functions, system function groups). Requirements, design, and test documents were
defined in the style of the U. S. military standard MIL-STD-2167A [DoD 88]. Appendices
A and B list the documents and their relationship to typical MIL-STD-2167A reviews.

* developing the requirements and design documents for each system function group. As
further system functions were identified for the mission application areas, appropriate
levels of documentation were begun.

* defining and prototyping a standard incremental, continuous integration and release
management process and tools. The overarching goal for integration and CM processes
was to make them an integral part of the overall development process, continuously
performed. First, CelsiusTech defined the mechanics of continuous integration and

CMU/SEI-96-TR-016 49

release management. Second, CelsiusTech established the process of defining each of
the increments or iterations. This required the cooperation and consensus of the
architecture team and integration team. The integration and release management
approach was prototyped, and early failures led to quick changes in the process. Celsius
Tech defined unit of integration and test at the system function or system function group
level, and worked, froze and distributed interfaces early in each iteration so that each
developer had time to build upon the updated interfaces. The architecture team received
feedback based on actual implementations. Rational Subsystems and Rational's
Configuration Management and Version Control (CMVC) tools were used to support
parallel team development. CelsiusTech's release management tools were extensions of
the Rational Environment. Integration frequency was initially one per quarter.

Mid-year, CelsiusTech decided to shift the program to use object-based analysis and design.
Structured analysis would be used in limited areas with a heavy algorithmic component. This
object-based approach was based on the work of Grady Booch [Booch 83]. CelsiusTech found
that an object-based approach provided a more direct mapping of elements from the real world
of naval vessels to the elements in the software system resulting in a system that was easier
to understand and evolve. No tool support for the Booch method existed in 1987, although sev-
eral vendors now provide such tools. CelsiusTech used a Macintosh drawing tool with stan-
dard icons defined by the architecture team to represent their designs.

1988: Continued architecture validation and asset implementation

Key interfaces in the common service layers were exercised by mission-application system
functions, thus helping to stabilize and expand the interfaces and architecture. Use of the prod-
uct line architecture and basic components on the Swedish system began in earnest. This pro-
vided early validation of the product line assets' suitability for use on multiple systems.
CelsiusTech modified system function interfaces and implementations to ensure high levels of
verbatim reuse. The architecture team controlled changes to system function interfaces.

Asset-development activities focused on iteratively designing, coding, and integrating more
functionality into the product line assets. System-function-group developer teams would typi-
cally do significant analysis, followed by many iterations of design, implementation, test, and
integration. Internal design and code reviews were followed early on, but as schedules be-
came tight, code reviews became less routine.

CelsiusTech created test-case generators and managers initially, but these reportedly were
not used. Documentation for the Ada units and system functions was completed as they were
built. Target issues were addressed such as characterizing the target environment (compiler,
runtime, operating system, target processor, network) for functionality, performance, and
memory utilization.

Integration frequency rose to approximately once every six weeks as the process, tools, and
trained development staff matured.

50 CMU/SEI-96-TR-016

1989 - 1990: Continued asset implementation and functional system deliveries

The focus for 1989 was to complete a sufficient set of the product line components and cus-
tomer-specific components for the Danish and Swedish system for shipboard installation. Cel-
siusTech optimized parallel integrations and release management (for the Swedish and
Danish systems) processes and emphasized performance monitoring at the individual devel-
oper, subsystem, and full-system levels. 1989 concluded with the first customer delivery and
installation onboard the ship for the Danish system-approximately 700K SLOC of Ada.

CelsiusTech began the third customer system in 1990 and completed shipboard installation of
the first release for the Swedish system. Emphasis was on completion of the product line as-
sets and delivery procedures.

5.3 Development Approaches, 1990 to 1994

The initial Danish and Swedish ships represented the creation of the product line, focusing on
the creation and validation of both the architecture and the product line component assets.
With the addition of further customer systems, CelsiusTech had new issues and concerns to
address. For instance, with the addition of ships C through E, management of increasing sets
of potentially conflicting requirements and priorities was necessary. An individual customer
project manager could no longer agree to customers' requests without negotiating with all oth-
er customer project managers and the product line architecture team. CelsiusTech had to in-
vent new processes to optimize these negotiations. With many of the product line assets built,
creating new systems became an issue of composing rather than building from scratch. Mon-
itoring of system performance and component-usage trends across multiple customers sys-
tems led to identification of opportunities to optimize production processes. Different
development processes were now necessary.

CelsiusTech began organizing its processes around the production of a system product for a
new customer and development of new or modified functionality for the product line. Documen-
tation, reviews, code, and test cases form the principal products of this process. Controlling
the configuration and consistency of documentation and code is vital to any large software-
development project. For product lines, it is even more important. With a product line, docu-
mentation of the components must never be out of date, as it is potentially needed for each
new customer product. A single point for updates is also mandatory for consistency and for
economic reasons. Developing processes and tools to manage the configurations and the
consistency requires early attention. As a result, much of the SS2000 process is defined in
terms of the documents produced.

5.3.1 System Product Development

For CelsiusTech, a system product is an actual system built for a customer from a set of sys-
tems functions, including hardware, software, and documentation. The production of a new
system product follows the six process phases shown in Figure 16. Each phase produces at

CMU/SEI-96-TR-016 51

System product--

analysis

System productFi S definition

SS 3RS MMI SWAT

System productptop-level
design

Fiueproduct opeti

watrfal equnc, athughth trdiionl odeitet and Intgaio-hss-r e

design

pSystem product

than ypica softare dvelopent. his i thetegorstation n wihawtrallf-yl

liability ~ ~ ~ ~ ~ ~ ~ ~ ~~~yse chrceitc.Tbe2orpg 3smaie h a ordctesadpousfr

factory

NOTE: Acronyms are acceptance test
defined in Table 2 on I I
page 53. SWFAT An accepted

system product

Figure 16: System Product Development Phases Showing Documents
Produced at Each Phase [Cederling 92]

least one document and concludes with a formal review. The phases are based on a typical
waterfall sequence, although the traditional code, unit test, and integration phases are re-

placed by a single phase, system product integration and test. System product development
is a process of composing, or integrating, components from the product line asset base rather
than typical software development. This is the type of situation in which a waterfall life-cycle
model can work effectively: building of a very similar system with known performance and re-
liability characteristics. Table 2 on page 53 summarizes the major activities and products for
each phase.

At CelsiusTech, many system products may be under development or maintenance simulta-
neously. When a customer requests a change for a product, the customer's program manager
cannot simply accede and provide the appropriate schedule and cost adjustments. The pro-

52 CMU/SEI-96-TR-016

gram manager must determine if the request could be provided through existing SS2000 prod-
uct line components. If not, the program manager must determine if the requested capability
is likely to be needed in the future by existing or new customers. If that is the case, the capa-
bility is developed with the rigor necessary for reusable components and added to the product
line asset base. If the capability is determined to be unique to a customer, the capability is de-
veloped specifically for this customer with no attempt to expend the extra resources to make

the resulting components reusable.

Phase Activities Makes use of Produces

System product Understand customer System family Final requirements
analysis requirements. description (SFD) specifications (FRS) (or

product specification)

Match customer System function group
requirements to existing requirements
product line requirements. specification (SFGRS)

System product Define operator interface SFGRS requirements MMI
definition requirements (screens, database

dialogue protocols, etc.). System software
requirements

Determine specification (SSRS)
hardware/software partition
of functionality. Software acceptance

test specification
(SWAT)

Define test to verify
requirements satisfied.

System product Identify system functions & System function group System software
top-level design system function groups design description design description

needed to fulfill SSRS (SFGDD) (SSDD)
requirements.

Describe allocation of load
module to hardware.

System product Define & describe System software design SFGDD software
detailed-level integration of system specification (SSDS) design specification
design functions & system function (SDS)

groups into product. Integration test
specification (ITS) SSSDD

Define & describe
integration verification System function group
criteria & procedures. user's guide

System function user's
guide

Table 2: System Product Development Phases

CMU/SEI-96-TR-016 53

Phase Activities Makes use of Produces

System product Perform integration & Released system SSDS
integration & verification, product
test

Perform software ITS
acceptance testing. Operators manual

(OPM) SWAT

System description
(SYD)

System product Define acceptance Software factory
factory specification for hardware, acceptance test
acceptance software. (SWFAT)

Build test environment.

Perform system software & Hardware factory
hardware acceptance acceptance test
testing. (HWFAT)

Define harbor & sea Harbor acceptance test
acceptance test definitions. (HAT)

Perform test. Sea acceptance test
I (SAT)

Table 2: System Product Development Phases (Continued)

5.3.2 Product Line Enhancements

The development of a new system function or system function group follows the process de-
picted in Figure 17. Each phase produces at least one document and most conclude with a
formal review. The diagram reflects the hierarchy of architectural components: system family,
system function group, and system function. The major activities and products are summa-
rized in Table 3 on page 56. Most activities are typical for a large government software system.
This process is cyclically repeated for each new release of the component to account for func-
tional enhancements, performance improvements, etc. Releases happen in parallel stages:
While release n is in the field, n+1 is being integrated, n+2 is being designed, and n+3 is having
its requirements ironed out.

54 CMU/SEI-96-TR-016

System family
analysis and
top-level design

SF Systems function

group analysis

SFGRS SFGAT I

System function
group top-level
designI I

SFGOP SFGDD

System function
analysis

(SRS) (SFAT)

System function
top-level
design

SDS System function
detail-level
design

S AUTS
System function
coding, integration
and test

Ada System functi
unit

System function
group integration
and test

NOTE: Acronyms are II
dfne Acn a e onSystem function SFGTP
defined in Table 3 on group

page 56.

Figure 17: System Family Development Phases [Cederling 92]

CMU/SEI-96-TR-016 55

Phase Activities Makes use of Documents Produced

System family Describe overall System Family Description
analysis and top-level design philosophy and (SFD)
design function of system

family.

Define SFG including
interfaces,
functionality.

Describe SS2000 System Software
architecture. Architecture (SSA)

Describe software Software Design Principles
developers design. (SDP)

Define principles and Software Design
guidelines. Guidelines (SDG)

System function Analyze and describe Requirements System Function Group
group analysis requirements for SFG. database Requirements Specification

(SFGRS)
Define test cases, test
environments, test
configurations.

Identify test case to System Function Group
requirements Acceptance Test (SFGAT)
traceability. Specification

Define overview plan System Function Group
for the SFG. Overview Plan (SFGOP)

System function Define & describe System Function Group
group top-level design partitioning of SFG Design Description

into system functions (SFGDD)
(SF).

Define & describe
SFG external
interface.

Define & describe SF
interfaces.

Table 3: System Family Development Phases

56 CMU/SEI-96-TR-016

Phase Activities Makes use of Documents Produced

System function (optional)
analysis Software Requirements

Specification (SRS)

(optional)
System Function
Acceptance Test (SFAT)
Specifications

System function top- Decompose SFGDD or SRs Software Design
level design requirements into Specification (SDS)

program functions.

System function Decompose program System software Updated SDS with ADA
detail-level design functions into Ada (SS) package specifications

units.

Define & describe
Ada unit interfaces,
internal program
structure.

Define & describe
how Ada units
integrate to form SF.

Write test cases for Ada Unit Test Specification
Ada units. (AUTS)

System function Code Ada units. SDS Integrated SF
coding, integration &
test Test Ada units. AUTS

Integrate Ada units to
form SF.

System function Integrate SFs into an SFGAT System Function Group
group integration & SFG. Test Protocol (SFGTP)
test

Test SFG.

Table 3: System Family Development Phases (Continued)

5.4 Development Approaches Since 1994

With ships F, G, and beyond, CelsiusTech's program focus has continued to evolve. Cel-
siusTech is now working to further optimize its production process at a broad level. Cel-
siusTech currently has a project under way to define a pre-integrated, reusable core system of
approximately 500,000 lines of code. This will dramatically increase the granularity of reuse.
Keeping its technology base current-both for mission application areas and infrastruc-
ture-and anticipating future directions is seen as a high priority. In response, CelsiusTech has

CMU/SEI-96-TR-016 57

created a technical steering group under the leadership of a vice president of technology to
find, evaluate, and validate technology opportunities. With the increasing size of its customer-
installed base, setting the direction of evolution for the product line has become critical. Cel-
siusTech has encouraged the formation of an SS2000 users group to optimize its process of
identifying and prioritizing its customers' emerging needs.

5.5 Analysis

CelsiusTech's development approach focused on creating a product line architecture and as-
sets for its particular domain to meet its business objectives. This focus became the selection
criteria for its processes, methods, and tools. Overall, we found a very pragmatic development
approach based on sound engineering practices, such as

* early focus on the architecture, its critical interfaces and key mechanisms, and the high-
level design

* continuous integration to reduce and manage the risk of pulling so many new and different
components

* monitoring and analysis of performance characteristics for the deployed system
components, thus forming an "as-is" system-behavior model

* balancing of identifying effective processes versus automation

5.5.1 Architecture

CelsiusTech uses architectural elements (system functions, system function groups) to de-
scribe its domain's functionality. These same conceptual pieces of the static architecture form
the unit of reuse, the unit of configuration, and work management. Development processes are
organized around these architectural elements. They also form the basic structure for the
product line documentation. The logical consistency, or mapping, that this provides between
the documents, processes, architecture, and understanding of the domain appear to improve
the overall development approach and its efficiency and ease the learning curve for technical
staff.

Large numbers of product line components resulted in many interfaces. Individual developers
had to be concerned with interfaces-how to use them, their importance, and how to create
them. Interfaces became everyone's concern.

5.5.2 Integration

The unit of integration, system test, and reuse was defined at the system-function level rather
than at the Ada-package level, which is the more typical unit of reuse discussed in the litera-
ture. We find it significant that CelsiusTech found it economically infeasible to integrate large
systems at the Ada-unit level.

CelsiusTech's product line assets include not only software but documentation; requirements;

and test plans, cases, and data. Managing the integration and configurations for the product

58 CMU/SEI-96-TR-016

line assets plus all customer systems in the product line was vital to CelsiusTech's success.
The integration and CM functions must support change coordination such that product line as-
sets are maintained in coordination with all other customer projects. One principal aspect of
CelsiusTech's solution in this area was the institutionalization of continuous integration rather
than the more traditional all-at-once approach.

5.5.3 Tools

Tool support for the magnitude of integration and CM required, we believe, was critical. Robust
integration and CM tools that support the large-scale, potentially geographically distributed de-
velopment and parallel development are essential for product line development.

CMU/SEI-96-TR-016 59

60 CMU/SEI-96-TR-01 6

6 Managing the Learning Curves

CelsiusTech's turnaround from one-at-a-time systems to a product line involved education and
training on the part of management and technicians. It also required re-educating the compa-
ny's customers about what they could expect from the product line approach. This section dis-
cusses how CelsiusTech managed the many learning curves necessary to climb before the
business could succeed.

6.1 Managing the Learning Curve for Managers

For the SS2000 program, managers needed to

" understand and support the business motivation and strategy for the SS2000 product line
" understand the role the infrastructure technologies, such as Ada, the Rational

Environment, or object technology would play in achieving the product line capability
" understand how to monitor progress and identify potential problems within their area of

the program
* define effective solutions to identified problems without undermining the overall corporate

product line strategy
* sell their direct supervisory reports on the business and technical approaches
* handle evolution of technical and management approaches

Because of the immaturity of the infrastructure technologies and building software systems as
product lines, little transition support existed for these technologies during 1986 to 1990. To
help managers learn how to operate within the product line paradigm, CelsiusTech relied on
flexible, motivated managers, training sessions under development for technicians, and exter-
nal consulting.

Formal training was developed and oriented for technicians, although a number of the lower
level managers went through portions of the technicians training program. While not oriented
specifically for managers, the training gave those managers an understanding of the technol-
ogies and development approach to be used on the SS2000 program, the importance of the
selected technologies, and an appreciation of the difficulty for technicians to shift to the tech-
nologies.

CelsiusTech used on-the-job mentoring from external consultants, particularly for the integra-
tion-team manager and the general program manager.

Finally, the first SS2000 general program manager was particularly adept at separating real
problems from perceived problems and gave incentive to his staff to find suitable solutions
without compromising the product line business strategy.

CMU/SEI-96-TR-016 61

6.2 Managing the Learning Curve for Technicians

At CelsiusTech, training was used as a risk-management strategy for the transition of new
technology and the creation of a new development and management culture supportive of its
product line business approach. CelsiusTech's training was substantial by industry norms.
Training was a management priority for all development staff and technical supervisors.

6.2.1 Initial Training Approach

In early 1987, requirements analysis, early architectural design, and design and implementa-
tion of key lower level services were under way. The early development team consisted of ap-
proximately 30 people geographically distributed across 5 sites and 2 countries. Few had
actual Ada experience; many were experienced with structured programming. There was lim-
ited knowledge of object technology and experience with the new software-development envi-
ronment. The product line concepts, philosophy, and architecture were not widely understood.

The initial training approach was typical at the time, consisting of

" a one-week Ada course with small hands-on programming exercises focused on the
introduction of Ada syntax and constructs and the terminology and concepts of object-
based design

" a three-day object-based design course composed of lecture and case studies
* a three-day hands-on software-development environment course

Courses were taught by external consultants. Both the courses and the instructors were well
regarded by the participants. Several groups of the early developers attended the suite of
courses and began development of the lower level common services. Early analysis of the re-
sulting designs and code found limited use of key software engineering principles that were
essential for a flexible, robust architecture and resulting product line. The developers still had
a limited understanding of the architecture and associated concepts.The initial training was
found suitable for transmitting concepts, features, and mechanisms, but did not help students
learn how to put into practice the software engineering and object-based concepts and princi-
ples. What was needed was an education approach. CelsiusTech also found the traditional
classroom performance an unreliable predictor of post-training performance on projects.

6.2.2 Expanded Re-education Approach

In response, the training was rapidly changed to a re-education approach that included

* classroom instruction for Ada and the development environment (similar to the original
training strategy)

* an introduction to the SS2000 product line architecture and concepts
* a six-week practicum in software engineering using Ada

* on-the-job mentoring

62 CMU/SEI-96-TR-016

The practicum was developed by an external consultant from Rational to integrate Ada, object-
based analysis/design/code, and incremental development. Through a series of graduated
hands-on exercises, lectures, and individual and group feedback sessions, students learned
to apply the requisite concepts. Appendix C contains a more detailed description of the original
practicum. The practicum became a reliable predictor of project performance; those who did

well in the practicum also did well in their projects. Total re-education time, excluding on-the-

job mentoring, was eight weeks.

While the new practicum went a long way toward bridging the gap between theory and prac-

tice, mentoring was found necessary to continue and reinforce the new paradigms. One of Cel-
siusTech's early goals was to develop an in-house training and mentoring capability. The initial
practicums trained the key designers and project leaders. External consultants provided the
initial training and mentoring to this core group. As the core group's experience grew, the group
in turn provided the mentoring to the next groups. CelsiusTech instructors were trained and
"certified" by the external consultants through a phased train-the-trainer program. This boot-

strapping approach leveraged scarce resources and helped in rebuilding a common develop-
ment culture.

Over 125 developers were trained between 1987 and 1989. The individual elements of the re-
education program were refined and tailored to CelsiusTech's evolving methods, processes,
and tools. The ANZAC project provided 70 days of training to all 50 developers new to SS2000.
Similar training was used with all other customer projects. To date, CelsiusTech has trained a
total of 680 developers I worldwide. A summary of the courses and duration is shown in Figure
18. Appendix D provides a brief description of the re-education curriculum elements.

6.2.3 Continuing Education Improvements

CelsiusTech continues to expand its training repertoire. With the emphasis shifting to the com-
position of new systems and the potential for building new product lines, CelsiusTech is creat-
ing an architects training program. The new program aims to develop future product line
architects. One group of selected participants has gone through the 300-hour architect's
course; a second group has begun the course. Course offerings were reported by several at-
tendees as primarily theoretical at this point, lacking in criteria and rationale for the selection
of an architecture.

1. While CelsiusTech has trained 680 developers since 1987, Section 4 shows a staffing level that peaked at 250

developers. The 680 includes all subsuppliers and subsidiaries. Normal attrition has necessitated additional
training.

CMU/SEI-96-TR-016 63

2W Company introduction

2 Cross-culture seminar
1. SS2000 product line overview

2 M Base System 2000 overview
10 Ada/Rational Environment fundamentals

5 Ada tasking
3 = M2000 development process

30 Ada practicum
Rational Environment-advanced 3

Rational subsystems 3
Ada-advanced 4

Target platform compilation 2.5

Target platform operating system 3

days Total: 70 days

Figure 18: SS2000 Training Program

6.3 Managing the Learning Curve for the Customer

CelsiusTech's marketers and their customers were faced with the need to change the ways in
which they carried out their respective roles. The following examples show the scope of chang-
es:

* CelsiusTech customer project managers, who provide the primary liaison with customers
after contract award, must negotiate with the product line organization for any requested
system changes before committing to any actions.

* CelsiusTech's marketers must base new work proposals on very different cost profiles for
naval systems.

* Customers must make tradeoffs between required versus desired specialization of
devices and functionality.

As part of marketing its naval product line, CelsiusTech has developed numerous presenta-
tions to explain the approach and the benefits to customers. Senior technical staff members
routinely were asked to assist in customer marketing situations and in new work proposals. As
CelsiusTech staff members have increased their ability to explain the product line approach
internally, they have become more effective in conveying their message to their customers.

The level of customer sophistication is growing. In 1995 CelsiusTech and their SS2000 product
line customers formed a users group, much like the users groups that form for COTS-based

64 CMU/SEI-96-TR-016

products. To the participants, the users group offers the chance to jointly work out future re-
quirements for ship systems and procure them at a lower cost than they could acquire them
individually. To CelsiusTech the users group presents the chance to maintain a tightly con-
trolled product line capability, since their customers now have the chance to migrate their sys-
tems as a collection rather than a set of disjoint products.

6.4 Analysis

In comparison with other organizations using similar technologies, the CelsiusTech training is
astonishing. Some of the most comprehensive training programs provide 10 days of Ada (in-
troductory and advanced), 10 days of object-based analysis and design (introductory and ad-
vanced), and 3 to 5 days on tools. CelsiusTech's training, both in terms of content and duration,
is more representative of corporate retraining programs. For example, Motorola's software en-
gineering curriculum is approximately 60 days covering their software development process,
methodology, tools, and development language.

Currently, CelsiusTech managers budget 3% of total work hours per person per year for train-
ing for all new projects. CelsiusTech has stated that the training investment was well worth the
expenditure of time and resources. From our observations, their training strategy was an ef-
fective means of transitioning new technology and ensuring the common use of a defined de-
velopment process.

6.4.1 Transition Effects

CelsiusTech's transition to a product line business has been sustained since 1986 and through
three changes of ownership. Sustaining any change-technological, business, or organiza-
tional-can be extremely difficult. It is important to understand how CelsiusTech has not only
survived revolutionary change but triumphed. A number of factors appear to account for this
success. First, Swedish business culture has a good balance between short-term and long-
term gains. The culture is less oriented toward end-of-quarter results, as we sometimes see
in the U.S. Second, because all CelsiusTech's contracts are fixed price, efficiency and predict-
ability of development are even more precious commodities than if the contracts had been
based on cost.

CMU/SEI-96-TR-016 65

66 CMU/SEI-96-TR-016

7 Summary Results

We believe that the CelsiusTech experience with product line development illustrates the or-
ganizational, technical, and economic transformation that a company should expect if embark-
ing on a similar path. This section summarizes the main points of the CelsiusTech experience.

7.1 Stages of Product Line Development

Having an effective product line capability is not simply a matter of the right software and sys-
tem architecture. The organizational structure, management practices, and personnel support
are also affected, and we contend that they are a vital part of the successful creation, use, and
evolution of a product line.

Since 1986, CelsiusTech Systems has evolved from a defense contractor to a COTS supplier.
The old ways of organization were insufficient to support the emerging business model. We
found that the changes in organizational-related issues reflect key stages in the development
and use of the product line. Each product line stage has a unique focus that, when reflected
in the organizational approach, enhances the ability of the organization to exploit a product line
approach. First, the distinct stages we observed are

* pre-product line
" product line creation, including initial use to validate the product line
* product line routine use
* product line evolution, to include structured transformations of the product line assets and

the product line production process over time, keeping the product and process current
with changing customer needs and available technology

The stages of product line development are characterized in Table 4.

Product Line Stage Characteristics of Stage

Pre-product line (prerequisite • recognition of economic leverage
for product line) • characterization of customer base

- identification of business discriminators

Product line creation (and • prioritization of business and technical drivers
validation) • capture of domain knowledge

• definition of architecture and unit of reuse
• build, stabilization, and validation of technical and

organizational infrastructure

Product line routine use • definition of customer requirements negotiation process
* definition and common use of production process

Product line evolution * continual optimization of product process
* adaptation of product applications
e migration of infrastructure to newer technology

Table 4: Observed Product Line Development Stages

CMU/SEI-96-TR-016 67

For each of the stages proposed above, we can postulate a set of enabling organizational at-
tributes, such as key organizational entities, management practices, and personnel expertise.
Table 5 captures our observations from CelsiusTech. Each row defines the attributes neces-
sary to move to the next product line stage.

Product Key Organization Management Personnel
Line Elements (Decision (Training,Line Authoity, Criteria, Practices,

Stage (Au~tho rit eria Prctce, Experience, Skill)Responsibility) Objectives)

Pre-product • visionary decision success criteria for * domain experts
line maker profit, domain definition, * system and software

• plan linking business business discriminators, architects
goals and technical • technical visionary
strategy

Creation * designated • decision criteria for • domain modeling
architecture group priorities, validating training and
with control and product infrastructure, consulting
responsibility for cost-benefit analysis - architecture creation
domain models & • investment in and validation
architecture technology transition consulting

* strong integration and
CM group

Routine use designated technical - negotiation minimums • technical negotiation
project managers who criteria - expertise in
arbitrate customer * indicators in place and concurrent software
requirements used to measure engineering and

product and process product line
engineering

Evolution - designated group to - criteria for assessing developers with

monitor/evaluate new added value from product line
technology infrastructure experience

• designated owner for modernization and - future architects
production process adapted mission areas - infrastructure experts
optimizations • criteria for improving

" customer user group to production process
control evolution - formulization of on-

going business goals
and technology
strategy

Table 5: Enabling Organizational Attributes for Product Line Stages

7.2 Substantial Initial Investment Required

CelsiusTech's adoption of the product line approach required a substantial upfront investment
in time, capital, and resources. The actual costs are kept in confidence by the company, but
they were by any measure intimidatingly large. At any point during the adoption process, Cel-

68 CMU/SEI-96-TR-016

siusTech might have lost faith, for the outcome was by no means assured. What kept them
staying the course was unwaveringly strong management-plus the realization that the old
way of doing business was no longer viable.

However, it is also the case that much of the initial investment was coincidental to the product
line approach. The adoption of Ada with its associated tools, environmental systems, and
training accounted for a large portion of the investment required. Adopting other advanced
technological foundations led to much of the rest. CelsiusTech estimates that the Base System
2000 effort contributed about 1/3 of the startup cost and provided functionality now available
commercially at a fraction of the cost.

7.3 The Payoff

CelsiusTech's payoff was the technical ability to produce large, sophisticated, real-time soft-
ware systems that met its customers' specifications, and to do so quickly and reliably. In short,
CelsiusTech acquired for itself the ability to be agile in its marketplace, which in turns gives it
a strong competitive advantage in an arena in which competition is keen and the individual
products are large enough to make or break lesser companies.

Beyond this, CelsiusTech has acquired the capability to enter new markets quickly and flexibly.
Its air-defense systems, taking 40% of their code directly from Ship System 2000, demonstrate
this. CelsiusTech is also considering entering other markets in which multiprocess real-time
sensor-based human-in-the-loop command-and-control systems play a dominant role.

In the technical sense, CelsiusTech's payoff was to reap the benefits of large-scale company-
wide reuse. Verbatim code reuse on new systems averages almost 80%. A product line ap-
proach enables reuse of documentation, design decisions, personnel skills, management de-
cisions, budgets, schedules, team structure, test plans, test cases, distribution procedures,
configuration-control processes, coding standards, code, performance models, and a host of
other assets across all products in the family. As a result, CelsiusTech has inverted its soft-
ware/hardware cost ratio from 65:35 to 20:80.

7.4 Architecture Was the Foundation

At the heart of CelsiusTech's technical approach was the architecture for the product line. Ev-
ery product was viewed in the terms of the tailoring that was required to each component in
the standard architecture. The architecture served as the conceptual backbone of the product
line. The architecture gave birth to the components that were created, maintained, pre-inte-
grated, tested, and deployed in each of the products. The architecture defined the unit-testing
requirements. The architecture spawned the product line-wide organizational units (for exam-
ple, to maintain Base System 2000). The architecture provided the vocabulary for discussing
how a new product would be produced from the standard assets. And the architecture provid-
ed the foundation for building the generic performance and process models.

CMU/SEI-96-TR-016 69

The architecture could not have been successful without the architects' thorough and deep
knowledge of the domain. Although formal domain-analysis methods did not exist in 1986, the
architects performed the essential domain-analysis activities of identifying and capturing the
corporate knowledge of their integrated weapons and command-and-control domain. The key
information captured was the kinds of operational functionality, their similarities and differenc-
es, and the relationships among the pieces of functionality.

After the architecture came sound design practices rooted in principles of information hiding
and encapsulation. This was the design-level key to achieving reuse.

7.5 Organizational Issues

A central theme of this study has been that technical approaches to achieving product line
practices are insufficient. Organizational issues, both inside CelsiusTech and outside, played
a central role in the story. As we have seen in Section 4, the company was compelled to adopt
a whole new internal structure to match its technical and business practices, and in Section 6
we saw how this was reinforced with extensive and rigorous training.

Of equal interest are the organizational changes visible from outside the company, having to
do with customer interaction. Marketers can no longer simply take orders, but must negotiate
with the guardians of the central product line assets to see if the proposed product is a close
enough fit. If not, they negotiate with the customer to trade functionality for price and reliable
delivery. Customers of CelsiusTech, once separate entities with no common interest, now exist
in a users group to jointly manage evolution of their ship systems and drive CelsiusTech to pro-
vide upgrades for them all at a lower price. Both sides benefit: CelsiusTech can continue to
produce products that match its product line capabilities closely, and the various world navies
receive their systems more economically.

Finally, we were told an anecdote that illustrates how much cultural change has occurred with
CelsiusTech's new approach. The Swedish navy discovered a bug in a delivered system. Cel-
siusTech investigated, discovered the source of the bug, and prepared to deliver a source code
change to the affected ships, after which it would upgrade its product line components to elim-
inate the bug in all future releases of all products. The customer balked, asking instead that
CelsiusTech perform the central upgrade first. The Swedish navy, they said, would be pleased
to wait for the fix until the entire product line was upgraded. It is somewhat difficult to conceive
of a customer turning down a source-code-level repair just for the sake of a concept, but the
Swedish navy has become such a strong proponent of the product line concept that this is pre-
cisely what happened.

7.6 CelsiusTech and the Domain Engineering / Application
Engineering Life-Cycle Model

Recently several organizations have promoted an idea, rooted in the reusability community,
that systems should be developed using domain analysis to generate a domain-wide model of

70 CMU/SEI-96-TR-016

requirements, followed by a domain-wide architecture, followed by domain-applicable software
components. This activity is called domain engineering. A complementary activity, application
engineering, then takes place to produce the requirements document, design, and software
components for a specific member of the family. Figure 19 shows a highly simplified view of
this life-cycle model in which the feedback flows have been suppressed.

Domain Engineering

Domain Domain Domain
Design Design Implementation

Requirements Design Integration
Analysis Analysis and Testing

Application Engineering

Figure 19: Domain Engineering and Application Engineering

CelsiusTech's accomplishment is in the spirit of this model, but with some important differenc-
es. First, CelsiusTech's domain artifacts were immediately and uncompromisingly constrained
by the first two ship systems that it was committed to develop. This provided instant feedback
as to the validity of the domain-wide assets: If they didn't apply to the two applications at hand,
they certainly were not appropriate for the product line at large. This led to the second differ-
ence. CelsiusTech's application engineering was performed in concert with (and in some cas-
es, before) its domain engineering. In particular, the family-wide requirements were developed
roughly at the same time as the product line architecture and after the requirements analysis
for the first two applications had been performed.

The moral is that there is more than one path through this life-cycle model, and CelsiusTech's
immediate need to validate the product line assets for the two applications at hand was an im-
portant factor in its success.

CMU/SEI-96-TR-016 71

7.7 Conclusion

We have tried to present, with as much fidelity and accuracy as we could, the experience of a
business organization when it adopted a product line approach for large software systems. We
do not know how much of CelsiusTech's experience will apply to other companies making the
same decision, but we hope that others find the account useful. We believe that product lines
present an opportunity for increased efficiencies and economies, more reliable and predict-
able and higher quality production, a more robust relationship with a company's customers,
and opportunities for expansion in current and new markets. We hope that this report will help
more organizations make the attempt.

72 CMU/SEI-96-TR-016

Appendix A SS2000 Documentation Set

Architecture Documents
Component

System family SFD System family description
SSA System software architecture
SDP Software design principles
SDG Software design guidelines

System function SFGRS System function group requirements specification
group SFGAT System function group acceptance test

SFGOP System function group overview plan
SFGDD System function group design document
SFGTP System function group test protocol

System function SRS Software requirements specification
SFAT System function acceptance test
SDS Software design specification
AUTS Ada unit test specification

System product FRS Final requirements specification
MMI Man-machine interface
SSRS System software requirements specification
SWAT Software acceptance test specification
SSDD System software design description
SSDS System software design specification
ITS Integration test specification
SYD System description
OPM Operator manual
SWFAT Software factory acceptance test

Table 6: SS2000 Documentation Set, Adapted from Cederling [Cederling 92]

CMU/SEI-96-TR-016 73

74 CMU/SEI-96-TR-O1 6

Appendix B Correspondence to DoD-STD 21 67A

Activities

DoD 2167A activity SS2000 System SS2000 System
Product Family

System design review FRS, MMI
(SDR)

Software specification review SSRS, SWAT SED, SFGRS, SEGAT
(SSR)

Preliminary design review SSDD SFGOP, SFGDD
(PDR) __________

Critical design review SSDS, ITS SDS
(CDR)

Test readiness review SWEAT SEGAT, SFGTP
(TRR)__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Table 7: DoD-STD 21 67A Reviews and CelsiusTech Documentation, Adapted from
Cederling [Cederling 92]

CMU/SEI-96-TR-O1 6 75

76 CMU/SEI-96-TR-016

Appendix C SS2000 Ada Practicum
The following describes the Ada practicum as it was originally conceived and delivered in
1987-1988. The practicum was a series of graduated hands-on exercises spread over six
weeks using increasingly more elements of Ada, object technology, software engineering, and
the development environment. The practicum comprised exercises plus lecture and group
feedback sessions. Participants also received individual feedback on their exercises. Lecture
and feedback sessions were held once or twice a week for two hours. The instructor was avail-
able for questions and discussion outside of the group sessions. Participants spent 75-100%
of their time while the instructor devoted approximately 100%. Typical size of the practicum
was 10 to 12 participants.

Exercise Description

The focus of the exercises was not on correct syntactic use of Ada. Rather, the emphasis was
on the design and coding styles and project-development approaches that would enable re-
use, ease of integration, and ease of evolution. Eight exercises formed the practicum. Most
consisted of a small number of Ada packages. For many participants, the practicum was the
first time they truly understood how Ada systems actually work. The exercise descriptions
were as follows:

* Exercise 1: Review of algorithmic uses of Ada. Includes an introduction to the use of
incremental development.

* Exercise 2: Implementation of abstractions. Students are introduced to abstract data
types in Ada and apply the concepts to the implementation of a low-level abstraction of a
small system. Testing of the abstraction is required.

* Exercise 3: Design and implementation of abstractions; using layers of abstraction.
Students build the abstraction on top of the results of Exercise 2. Testing of the
abstractions and the layers is required.

" Exercise 4: Design of complete small system. From a given set of requirements, students
design a small Ada system. Project design notation and Ada package specifications are
used to represent the designs.

* Exercise 5: Implementation of design. Following the feedback session for Exercise 4,
students may redesign their small systems and then implement their designs.
Documentation of all changes as a result of the feedback session or implementation is
required.

" Exercise 6: Design and code review. Students critique the design and code of an
instructor-provided solution to Exercise 4 and 5.

* Exercise 7: System requirement change. A further requirement is levied on the small
system from Exercise 4. Students must modify their design.

* Exercise 8: Implementation of design extension. Students implement their proposed
design change and evaluate alternative designs that would have eased the change.

The time allocated for each exercise is shown in Table 8.

CMU/SEI-96-TR-016 77

Exercise Duration in

days

1 Review of algorithmic uses of Ada 2.5

2 Implementation of abstraction 2

3 Design and implementation of abstractions 2

4 Design of small system 3

5 Implementation of design 4

6 Design and code review 1

7 System requirement change 2

8 Implementation of design extension 4

Table 8: Estimated Student Time Per Exercise

78 CMU/SEI-96-TR-016

Appendix D SS2000 Re-Education Curriculum
Description

The training curriculum is designed to provide project developers and integrators with the
knowledge and skills to develop and integrate new components for the product line or to com-
pose systems from the product line asset base. The curriculum is intended to provide just-in-
time training to technical members of the staff. Although the total training time to complete the
courses is 70 days, students typically spread the training over a 3- to 6-month period. Follow-
ing are brief descriptions of each component of the training and a possible usage scenario.

D.1 Curriculum Components

Company Introduction
" Duration: 2 days
* Prerequisites: none
* Description: provides participants with an overview of CelsiusTech-its business,

history, organizational structure, operational practices.

Cross Culture Seminar
* Duration: 2 days
* Prerequisites: Company Introduction
* Description: This was specific to the Australian development team. It described the

differences in the work cultures between Swedes and Australians.

SS2000 Product Line Overview
* Duration: 1 day
• Prerequisites: Company Introduction
* Description: provides an overview of the naval product line-its underlying concepts and

purpose, static and dynamic architecture, key common mechanisms.

Base System Overview
* Duration: 2 days
* Prerequisites: SS2000 Product Line Overview
* Description: introduces technical staff to the role of the base system, its components and

their specific capabilities, and what developers need to know to use the base system.

CMU/SEI-96-TR-016 79

Ada/Rational Environment Fundamentals
" Duration: 10 days
• Prerequisites: SS2000 Product Line Overview
• Description: provides an intensive hands-on introduction to Ada and the basic features

of the Rational Environment. Emphasis is placed on the use of Ada declarations,
statements, subprograms, and packages to solve basic programming problems. Ada
generics, exceptions, and tasking are introduced.

Ada Tasking
" Duration: 5 days
* Prerequisites: Ada/Rational Fundamentals

* Description: provides hands-on instruction to the concepts and mechanics of Ada
tasking. Emphasis is placed on actual use of Ada tasking and tasking issues. (Note:
Tasking is a key aspect of the interprocess communication for the product line and is used
heavily throughout the system.)

SS2000 Development Process
* Duration: 3 days
* Prerequisites: SS2000 Product Line Overview, Ada/Rational Fundamentals
* Description: provides a detailed discussion of the processes, methods, and tools used

to build customer systems and evolve the product line.

Ada Practicum
* Duration: 30 days
* Prerequisites: Ada/Rational Fundamentals

* Description: provides an intensive hands-on workshop to help project developers
develop practical skills in the use of software engineering, Ada, object-based design, the
Rational Environment, and the concepts of the product line development process.

Rational Environment - Advanced

" Duration: 3 days
• Prerequisites: Ada/Rational Fundamentals

* Description: provides hands-on experience with additional development environment
features.

Rational Subsystems

* Duration: 3 days

* Prerequisites: Ada/Rational Fundamentals

80 CMU/SEI-96-TR-016

Description: provides hands-on experience with the purpose and use of Rational
Subsystems and CMVC (configuration management and version control)

Ada - Advanced

* Duration: 4 days
* Prerequisites: Ada/Rational Fundamentals, Ada Tasking
• Description: provides hands-on experience with Ada generics and advanced aspects of

typing, tasking, exceptions.

Target Platform Compilation
" Duration: 1.5 days
* Prerequisites: Ada/Rational Fundamentals, Base System Overview
* Description: introduces the target compilation, debugging, and testbed usage.

Target Platform Operating System
* Duration: 3 days
* Prerequisites: Ada/Rational Fundamentals
• Description: introduces the target platform testbed usage-target operating system,

runtime, and associated tools.

D.2 Typical Usage
Table 9 shows a typical usage scenario of the various curriculum components.

Week Course or Activity

1 Company Introduction
Cross Culture Seminar
SS2000 Product Line Overview

2 Ada/Rational Fundamentals

3 Ada/Rational Fundamentals

4 in project areas

5 Ada Practicum

6 Ada Practicum

7 Ada Practicum
Rational Environment - Advanced

8 Ada Practicum

9 Ada Practicum

Table 9: Typical Curriculum Usage Scenario

CMU/SEI-96-TR-016 81

Week Course or Activity

10 Ada Practicum
Ada Tasking

11 Ada Practicum
Rational Subsystems

12 in project areas
SS2000 Development Process

13 in project areas

14 in project areas

15 in project areas
Ada -Advanced

16 in project areas

17 in project areas

18 in project areas

19 in project areas
Target Compilation
Target Operating System

Table 9: Typical Curriculum Usage Scenario (Continued)

82 CMU/SEI-96-TR-016

References
[Booch 83] Booch, G.Software Engineering with Ada. Menlo Park, Ca.: Ben-

jamin/Cummings, 1983.

[Britton 81] Britton, K.; Parker, R.; & Parnas, D. "A Procedure for Designing
Abstract Interfaces for Device Interface Modules," 195-204. Pro-
ceedings, Fifth International Conference on Software Engineering.
Silver Spring, Md.: IEEE Computer Society Press, 1981.

[Brooks 95] Brooks, F. The Mythical Man Month-Essays in Software Engineer-
ing (20th Anniversaty edition). Reading, Ma.: Addison-Wesley,
1995.

[Cederling 92] Cederling, Ulf. Industrial Software Development-A Case Study
(Thesis No. 348). Link6ping, Sweden: Link6ping University, 1992.

[CelsiusTech 92] CelsiusTech Systems AB. Introduction to the Application Interface
Standard (Document O/AIS-1 00139), 1992.

[CelsiusTech 96] CelsiusTech Systems Web page [online]. Available WWW: <URL:
http://world.celsiustech.se/CTSalIm-E.html>, 1996.

[DoD 78] U.S. Department of Defense. Navy Weapon System Software Devel-
opment (DoD-STD-1 679), 1978.

[DoD 88] U.S. Department of Defense. Defense System Software Develop-
ment (DoD-STD-2167-A), 1988.

[Parnas 78] Parnas, D. "Designing Software for Ease of Extension and Contrac-
tion," 264-278. Proceedings, Third International Conference on Soft-
ware Engineering. Silver Spring, Md.: IEEE Computer Society
Press, May 1978.

[Parnas 85] Parnas, D.; Clements, P.; & Weiss, D.; "The Modular Structure of
Complex Systems," 408-417. Proceedings, Seventh International
Conference on Software Engineering, March 1984; reprinted in
IEEE Transactions on Software Engineering SE-11 (March 1985):
259-266.

[Peterson 94] Peterson, A. & Stanley, J. Mapping a Domain Model and Architec-
ture to a Generic Design (CMU/SEI-94-TR-08, ADA283747). Pitts-
burgh, Pa.: Software Engineering Institute, Carnegie Mellon
University, 1994.

[Ward 85] Ward, P & Mellor, S. Structured Development for Real-Time Sys-
tems. N.Y.: Yourdon Press, 1985.

CMU/SEI-96-TR-016 83

84 CMU/SEI-96-TR-016

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for Public Release

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited
N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-96-TR-016 ESC-TR-96-016

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Software Engineering Institute (if applicable) SEI Joint Program Office
SEI

6c. ADDRESS (city, state, and zip code) 7b. ADDRESS (city, state, and zip code)

Carnegie Mellon University HQ ESC/AXS
Pittsburgh PA 15213 5 Eglin Street

Hanscom AFB, MA 01731-2116
8a. NAME OFFUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable) F1 9628-95-C-0003
SEI Joint Program Office ESC/ENS

8c. ADDRESS (city, state, and zip code)) 10. SOURCE OF FUNDING NOS.

Carnegie Mellon University PROGRAM PROJECT TASK WORK UNIT
Pittsburgh PA 15213 ELEMENT NO NO. NO NO.63756E N/A N/A N/A

II. TITLE (Include Security Classification)

A Case Study in Successful Product Line Development

12. PERSONAL AUTHOR(S)
Lisa Brownsword, Paul Clements
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT

Final FROM TO October 1996 95
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

FIELD GROUP SUB. GR. product line, product family, software architecture, reuse, embedded real-

time systems

19. ABSTRACT (continue on reverse if necessary and identify by block number)

A product line is a set of related systems that address a market segment. Building a product line out of
a common set of core assets, as opposed to building each member system separately, epitomizes
reuse. Although software technology is key to achieving a product line capability, organizational and
process considerations are just as crucial. This report describes the experience of one company, Cel-
siusTech Systems AB of Sweden, that builds large, complex, embedded, real-time shipboard com-
mand-and-control systems as a product line, developed in common from a base set of core software
and organizational assets. The report describes the changes that CelsiusTech had to make to its soft-

(please turn over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED f SAME AS RPT[] DTIC USERS f Unclassified, Unlimited Distribution

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (include area code) 22c. OFFICE SYMBOL

Thomas R. Miller, Lt Col, USAF (412) 268-7631 ESC/AXS (SEI)

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

ABSTRACr - continued from page one, block 19

ware, organizational, and process structures to redirect the company toward a product line
approach that yielded substantial economic and marketplace benefits to the company.

